Abstract:
PROBLEM TO BE SOLVED: To provide a method and apparatus for executing lock instructions speculatively in an out-of-order processor. SOLUTION: In one embodiment, a prediction is made whether a given lock instruction will actually be contended. If not, then the lock instruction may be treated as having a normal load micro-operation which may be speculatively executed. Monitor logic may look for indications that the lock instruction is actually contended. If no such indications are found, the speculative load micro-operation and other micro-operations corresponding to the lock instruction may retire. However, if such indications are in fact found, the lock instruction may be restarted, and the prediction mechanism may be updated. COPYRIGHT: (C)2011,JPO&INPIT
Abstract:
A method and apparatus for executing lock instructions speculatively in an out-of-order processor are disclosed. In one embodiment, a prediction is made whether a given lock instruction will actually be contended. If not, then the lock instruction may be treated as having a normal load micro-operation which may be speculatively executed. Monitor logic may look for indications that the lock instruction is actually contended. If no such indications are found, the speculative load micro-operation and other micro-operations corresponding to the lock instruction may retire. However, if such indications are in fact found, the lock instruction may be restarted, and the prediction mechanism may be updated.
Abstract:
A number of addition instructions are provided that have no data dependency between each other. A first addition instruction stores its carry output in a first flag of a flags register without modifying a second flag in the flags register. A second addition instruction stores its carry output in the second flag of the flags register without modifying the first flag in the flags register.
Abstract:
A method and apparatus for executing lock instructions speculatively in an out-of-order processor are disclosed. In one embodiment, a prediction is made whether a given lock instruction will actually be contended. If not, then the lock instruction may be treated as having a normal load micro-operation which may be speculatively executed. Monitor logic may look for indications that the lock instruction is actually contended. If no such indications are found, the speculative load micro-operation and other micro-operations corresponding to the lock instruction may retire. However, if such indications are in fact found, the lock instruction may be restarted, and the prediction mechanism may be updated.
Abstract:
Systems and methods for flag tracking in data manipulation operations involving move elimination. An example processing system comprises a first data structure including a plurality of physical register values; a second data structure including a plurality of pointers referencing elements of the first data structure; a third data structure including a plurality of move elimination sets, each move elimination set comprising two or more bits representing two or more logical data registers, the third data structure further comprising at least one bit associated with each move elimination set, the at least one bit representing one or more logical flag registers; a fourth data structure including an identifier of a data register sharing an element of the first data structure with a flag register; and a move elimination logic configured to perform a move elimination operation.
Abstract:
A hardware profiling mechanism implemented by performance monitoring hardware enables page level automatic binary translation. The hardware during runtime identifies a code page in memory containing potentially optimizable instructions. The hardware requests allocation of a new page in memory associated with the code page, where the new page contains a collection of counters and each of the counters corresponds to one of the instructions in the code page. When the hardware detects a branch instruction having a branch target within the code page, it increments one of the counters that has the same position in the new page as the branch target in the code page. The execution of the code page is repeated and the counters are incremented when branch targets fall within the code page. The hardware then provides the counter values in the new page to a binary translator for binary translation.