Abstract:
A system for analyzing a sample includes an illumination source with a plurality of transmitting optical fibers optically coupled to the illumination source and a detector with a plurality of receiving optical fibers optically coupled to the detector. The system further includes a plurality of probes coupled to respective ones of the plurality of transmitting optical fibers and respective ones of the plurality of receiving optical fibers. The plurality of probes are configured to illuminate respective portions of a surface of the sample and configured to receive illumination reflected, refracted, or radiated from the respective portions of the surface of the sample. The system may further include one or more switches and/or splitters configured to optically couple respective ones of the plurality of transmitting optical fibers to the illumination source and/or configured to optically couple respective ones of the plurality of receiving optical fibers to the detector.
Abstract:
An interferometer system and method may be used to measure substrate thickness or shape. The system may include two spaced apart reference flats having that form an optical cavity between two parallel reference surfaces. A substrate holder may be configured to place the substrate in the cavity with first and second substrate surfaces substantially parallel with corresponding first and second reference surfaces such that a space between the first or second substrate surface is three millimeters or less from a corresponding one of the reference surfaces or a damping surface. Interferometer devices may be located on diametrically opposite sides of the cavity and optically coupled thereto. The interferometers can map variations in spacing between the substrate surfaces and the reference surfaces, respectively, through interference of light optically coupled to and from to the cavity via the interferometer devices.
Abstract:
Systems and methods for determining two or more characteristics of a wafer are provided. The two or more characteristics include a characteristic of the wafer that is spatially localized in at least one dimension and a characteristic of the wafer that is not spatially localized in two dimensions.
Abstract:
An interferometer system and method may be used to measure substrate thickness or shape. The system may include two spaced apart reference flats having that form an optical cavity between two parallel reference surfaces. A substrate holder may be configured to place the substrate in the cavity with first and second substrate surfaces substantially parallel with corresponding first and second reference surfaces such that a space between the first or second substrate surface is three millimeters or less from a corresponding one of the reference surfaces or a damping surface. Interferometer devices may be located on diametrically opposite sides of the cavity and optically coupled thereto. The interferometers can map variations in spacing between the substrate surfaces and the reference surfaces, respectively, through interference of light optically coupled to and from to the cavity via the interferometer devices.
Abstract:
Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to simultaneously form multiple illumination areas on the wafer with substantially no illumination flux between each of the areas. The system also includes a scanning subsystem configured to scan the multiple illumination areas across the wafer. In addition, the system includes a collection subsystem configured to simultaneously and separately image light scattered from each of the areas onto two or more sensors. Characteristics of the two or more sensors are selected such that the scattered light is not imaged into gaps between the two or more sensors. The two or more sensors generate output responsive to the scattered light. The system further includes a computer subsystem configured to detect defects on the wafer using the output of the two or more sensors.
Abstract:
Computer-implemented methods for inspecting and/or classifying a wafer are provided. One computer-implemented includes detecting defects on a wafer using one or more defect detection parameters, which are determined based on a non-spatially localized characteristic of the wafer that is determined using output responsive to light scattered from the wafer generated by an inspection system. Another computer-implemented method includes classifying a wafer based on a combination of a non-spatially localized characteristic of the wafer determined using output responsive to light scattered from the wafer generated by an inspection system and a spatially localized characteristic of the wafer determined using the output.