Abstract:
Systems and methods for measuring one or more characteristics of patterned features on a specimen are provided. One system includes an optical subsystem configured to acquire measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The system also includes a processor configured to determine the one or more characteristics of the patterned features from the measurements. One method includes acquiring measurements of light scattered from the patterned features on the specimen at multiple angles of incidence, multiple azimuthal angles, and multiple wavelengths simultaneously. The method also includes determining the one or more characteristics of the patterned features from the measurements.
Abstract:
Methods and systems for controlling variation in dimensions of patterned features across a wafer are provided. One method includes measuring a characteristic of a latent image formed in a resist at more than one location across a wafer during a lithography process. The method also includes altering a parameter of the lithography process in response to the characteristic to reduce variation in dimensions of patterned features formed across the wafer by the lithography process. Altering the parameter compensates for non-time varying spatial variation in a temperature to which the wafer is exposed during a post exposure bake step of the lithography process and an additional variation in the post exposure bake step.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system comprises any one or more of the following apparatuses: a reflectometric, a ellipsomertic, imaging, interferometric, and/ or scanning angle system.
Abstract:
Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. A plurality of targets is provided. Each target includes a portion of the first and second structures and each is designed to have an offset between its first and second structure portions. The targets are illuminated with electromagnetic radiation to thereby obtain spectra from each target at a −1st diffraction order and a +1st diffraction order. It is determined whether there are any overlay error between the first structures and the second structures using a scatterometry technique based on the detected spectra by (i) for each target, determining a first differential intensity between the −1st diffraction order and a +1st diffraction order, (ii) for a plurality of pairs of targets each having a first target and a second target, determining a second differential intensity between the first differential intensity of the first target and the first differential intensity of the second target, and (iii) determining any overlay error between the first structures and the second structures using a scatterometry technique based on the second differential intensities determined from each target pair.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system comprises any one or more of the following apparatuses: a reflectometric, a ellipsomertic, imaging, interferometric, and/ or scanning angle system.
Abstract:
Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. In one embodiment, a method for determining overlay between a plurality of first structures in a first layer of a sample and a plurality of second structures in a second layer of the sample is disclosed. Targets A, B, C and D that each include a portion of the first and second structures are provided. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb between its first and second structures portions; target C is designed to have an offset Xc between its first and second structures portions; and target D is designed to have an offset Xd between its first and second structures portions. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd. The targets A, B, C and D are illuminated with electromagnetic radiation to obtain spectra SA, SB, SC, and SD from targets A, B, C, and D, respectively. Any overlay error between the first structures and the second structures is then determined using a linear approximation based on the obtained spectra SA, SB, SC, and SD.