Abstract:
Systems and methods are disclosed for using ellipsometer configurations to measure the partial Mueller matrix and the complete Jones matrix of a system that may be isotropic or anisotropic. In one embodiment two or more signals, which do not necessarily satisfy any symmetry assumptions individually, are combined into a composite signal which satisfies a symmetry assumption. The individual signals are collected at two or more analyzer angles. Symmetry properties of the composite signals allow easy extraction of overlay information for any relative orientation of the incident light beam with respect to a ID grating target, as well as for targets comprising general 2D gratings. Signals of a certain symmetry property also allow measurement of profile asymmetry in a very efficient manner. In another embodiment a measurement methodology is defined to measure only signals which satisfy a symmetry assumption. An optional embodiment comprises a single polarization element serving as polarizer (111) and analyzer (115). Another optional embodiment uses an analyzing prism (144) to simultaneously collect two polarization components of reflected light.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system comprises any one or more of the following apparatuses: a reflectometric, a ellipsomertic, imaging, interferometric, and/ or scanning angle system.
Abstract:
Disclosed are techniques, apparatus, and targets for determining overlay error between two layers of a sample. In one embodiment, a method for determining overlay between a plurality of first structures in a first layer of a sample and a plurality of second structures in a second layer of the sample is disclosed. Targets A, B, C and D that each include a portion of the first and second structures are provided. Target A is designed to have an offset Xa between its first and second structures portions; target B is designed to have an offset Xb between its first and second structures portions; target C is designed to have an offset Xc between its first and second structures portions; and target D is designed to have an offset Xd between its first and second structures portions. Each of the offsets Xa, Xb, Xc and Xd is preferably different from zero; Xa is an opposite sign and differ from Xb; and Xc is an opposite sign and differs from Xd. The targets A, B, C and D are illuminated with electromagnetic radiation to obtain spectra SA, SB, SC, and SD from targets A, B, C, and D, respectively. Any overlay error between the first structures and the second structures is then determined using a linear approximation based on the obtained spectra SA, SB, SC, and SD.