Abstract:
Reticles may comprise shading elements (SEs) for locally altering the reticle optical properties. However, such reticles may degrade over time as a result of repeated exposure to radiation in a lithography process, as the radiation may "heal" the SEs. Disclosed are techniques for monitoring a reticle in order to maintain confidence about the reticle's optical properties and the uniformity of patterns on wafers that are to be printed using the reticle. Reticles undergo periodic inspection comprising reticle transmission measurement and/or aerial imaging of the reticle. When such inspection indicates sufficient reticle degradation, the reticle is tagged for correction prior to its subsequent use in a lithography process.
Abstract:
One embodiment relates to an apparatus, including a CRT-type gun (for example, 102, or 302, or 510, or 1002, or 1113) and deflectors to generate and scan the electron beam, which utilizes the electron beam for inspection or metrology of a substrate. The apparatus may comprise a portable scanning electron microscope. Another embodiment relates to a method of inspecting a substrate or measuring an aspect of the substrate, where an electron beam is focused using electrostatic lenses formed by metal plates (704) supported by and separated by fused glass beads (706) or other insulating material. Another embodiment relates to a method of obtaining an electron beam image of a surface of a bulk specimen where a portable SEM device is moved to the bulk specimen. Other embodiments and features are also disclosed.
Abstract:
Various test structures and methods for monitoring or controlling a semiconductor fabrication process are provided. One test structure formed on a wafer as a monitor for a lithography process includes a bright field target (30) that includes first grating structures (32) . The test structure also includes a dark field target (34) that includes second grating structures (36) . The first and second grating structures have one or more characteristics that are substantially the same as one or more characteristics of device structures formed on the wafer. In addition, the test structure includes a phase shift target (38) having characteristics that are substantially the same as the characteristics of the bright field or dark field target except that grating structures (40) of the phase shift target are shifted in optical phase from the first or second grating structures. One or more characteristics of the targets can be measured and used to determine parameter (s) of the lithography process .
Abstract:
Methods and systems for controlling variation in dimensions of patterned features across a wafer are provided. One method includes measuring a characteristic of a latent image formed in a resist at more than one location across a wafer during a lithography process. The method also includes altering a parameter of the lithography process in response to the characteristic to reduce variation in dimensions of patterned features formed across the wafer by the lithography process. Altering the parameter compensates for non-time varying spatial variation in a temperature to which the wafer is exposed during a post exposure bake step of the lithography process and an additional variation in the post exposure bake step.
Abstract:
Disclosed are systems and methods for modifying a reticle. In general, inspection results from a plurality of wafers or prediction results from a lithographic model are used to individually decrease the dose or any other optical property at specific locations of the reticle. In one embodiment, any suitable optical property of the reticle is modified by an optical beam, such as a femto-second laser, at specific locations on the reticle so as to widen the process window for such optical property. Examples of optical properties include dose, phase, illumination angle, and birefringence. Techniques for adjusting optical properties at specific locations on a reticle using an optical beam may be practiced for other purposes besides widening the process window.
Abstract:
Disclosed are techniques for determining and correcting reticle variations using a reticle global variation map generated by comparing a set of measured reticle parameters to a set of reference reticle parameters. The measured reticle parameters are obtained by reticle inspection, and the variation map identifies reticle regions and associated levels of correction. In one embodiment, the variation data is communicated to a system which modifies the reticle by embedding scattering centers within the reticle at identified reticle regions, thereby improving the variations. In another embodiment the variation data is transferred to a wafer stepper or scanner which in turn modifies the conditions under which the reticle is used to manufacture wafers, thereby compensating for the variations and producing wafers that are according to design.
Abstract:
Disclosed are systems and methods for mitigating variances (e.g., critical dimension variances) on a patterned wafer are provided. In general, variances of a patterned wafer are predicted using one or more reticle fabrication and/or wafer processing models. The predicted variances are used to modify selected transparent portions of the reticle that is to be used to produce the patterned wafer. In a specific implementation, an optical beam, such as a femto-second laser, is applied to the reticle at a plurality of embedded positions, and the optical beam is configured to form specific volumes of altered optical properties within the transparent material of the reticle at the specified positions. These reticle volumes that are created at specific positions of the reticle result in varying amounts of light transmission or dose through the reticle at such specific positions so as to mitigate the identified variances on a wafer that is patterned using the modified reticle.
Abstract:
Disclosed is a method of determining an overlay error between two layers of a multiple layer sample. For a plurality of periodic targets that each have a first structure formed from a first layer and a second structure formed from a second layer of the sample, an optical system is employed to thereby measure an optical signal from each of the periodic targets. There are predefined offsets between the first and second structures. An overlay error is determined between the first and second structures by analyzing the measured optical signals from the periodic targets using a scatterometry overlay technique based on the predefined offsets. The optical system comprises any one or more of the following apparatuses: a reflectometric, a ellipsomertic, imaging, interferometric, and/ or scanning angle system.