Abstract:
According to one embodiment of the present invention, an ion source includes: an anode tube in which gas flowing in through one side is ionized and discharged to the other side and in which a slit is formed on the outer circumference thereof; a filament which emits thermal electrons toward the slit so as to ionize the gas; and a diffusion-preventing body arranged between the filament and the slit and having at least one hole through which the thermal electrons can pass so as to reduce the diffusion of the thermal electrons flowing into the anode tube.
Abstract:
Disclosed herein are a monochromator and a charged particle beam apparatus including the same. The monochromator may include a first electrostatic lens configured to have a charged particle beam discharged by an emitter incident on the first electrostatic lens, refract a ray of the charged particle beam, and include a plurality of electrodes and a second electrostatic lens spaced apart from the first electrostatic lens at a specific interval and configured to have a central axis disposed identically with a central axis of the first electrostatic lens, have the charged particle beam output by the first electrostatic lens incident on the second electrostatic lens, refract the ray of the charged particle beam, and comprise a plurality of electrodes. Accordingly, there is an advantage in that a charged particle beam can have an excellent profile even after passing through the monochromator.
Abstract:
The present invention relates to a particle beam mass spectrometer and particle measurement method by means of same. More particularly, the present invention relates to a particle beam mass spectrometer including: a particle focusing unit focusing a particle beam induced by gas flow; an electron gun forming a charged particle beam by accelerating thermal electrons to ionize the particle beam focused by the particle focusing unit; a deflector deflecting the charged particle beam according to kinetic energy to charge ratio; and a sensing unit measuring a current induced by the deflected charged particle beam, wherein the deflector includes at least one particle beam separation electrode provided at each of opposite sides with respect to a progress axis of the charged particle beam before being deflected.