Abstract:
A method for cleaning the surface of a semiconductor wafer is disclosed. A first cleaning solution is applied to the wafer surface to remove contaminants on the wafer surface. The first cleaning solution is removed with some of the contaminants on the wafer surface. Next, an oxidizer solution is applied to the wafer surface. The oxidizer solution forms an oxidized layer on remaining contaminants. The oxidizer solution is removed and then a second cleaning solution is applied to the wafer surface. The second cleaning solution is removed from the wafer surface. The cleaning solution is configured to substantially remove the oxidized layer along with the remaining contaminants.
Abstract:
A method for making a solution for use in preparing a surface of a substrate is provided. The method includes providing a continuous medium that adds a polymer material to the continuous medium. A fatty acid is adding to the continuous medium having the polymer material, and the polymer material defines a physical network that exerts forces in the solution that overcome buoyancy forces experienced by the fatty acid, thus preventing the fatty acids from moving within the solution until a yield stress of the polymer material is exceeded by an applied agitation. The applied agitation is from transporting the solution from a container to a preparation station that applies the solution to the surface of the substrate.
Abstract:
One embodiment provides a method of processing a substrate. The method includes applying a solution to a surface of a substrate. At least one reacting species has been produced by dissociation of the solution by applying energy such as a light to the solution. A first material on the substrate is reacted and removing the reacted first material. A system for processing a substrate is also described.
Abstract:
A method for processing a substrate is provided which includes generating a meniscus on the surface of the substrate and applying photolithography light through the meniscus to enable photolithography processing of a surface of the substrate.
Abstract:
A system and method of moving a meniscus from a first surface to a second surface includes forming a meniscus between a head and a first surface. The meniscus can be moved from the first surface to an adjacent second surface, the adjacent second surface being parallel to the first surface. The system and method of moving the meniscus can also be used to move the meniscus along an edge of a substrate.
Abstract:
PROBLEM TO BE SOLVED: To provide an apparatus and method for reducing contamination capable of achieving lower costs, and more sufficiently supplying and removing fluid to and from a wafer surface. SOLUTION: Processing fluid is supplied to the wafer surface and almost instantly removed with fluid on a wafer by a vacuum provided by an outlet 304. The processing fluid is supplied to the wafer surface such that the processing fluid is present in an area between a proximity head and the wafer surface for a moment with the given fluid on the wafer surface. In this processing, a meniscus 116 is formed and the boundary of the meniscus 116 acts as an IPA/processing fluid interface 118. Therefore, the meniscus 116 is supplied to the surface and practically acts as a fixed flow removed with the given fluid on the wafer surface. The fluid is almost instantly removed from the wafer surface area during drying, so that the formation of droplets of the fluid is prevented in the wafer surface area during drying and the probability of contamination on a wafer 108 is reduced. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To solve the problem that transferring a board with rollers and other mechanical devices may result in application of a large stress to the board, thus leading to the deterioration of the board. SOLUTION: A non-Newtonian fluid is provided to float the board in the non-Newtonian fluid capable of supporting the board. Subsequently, a supply force is added to the non-Newtonian fluid to cause the non-Newtonian fluid to flow so that the flow moves the board along a direction of the flow. This method applies to a device and a system that transfers the board using the non-Newtonian fluid. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
Methods and apparatus for cleaning wafer surfaces are provided, especially for cleaning surfaces of patterned wafers. The cleaning apparatus includes a cleaning head with channels on the surface facing the patterned wafer, which has a predominant pattern. Cleaning material flowing the channels exerts a shear force on the surface of a patterned wafer, which is oriented in a specific direction to the cleaning head. The shear force and the specific orientation between the patterned wafer and the cleaning head improve the removal efficiency of the surface contaminants.
Abstract:
A substrate preparation method is provided. The method includes providing a substrate to be prepared. The substrate has a first layer and second layer. The first layer is to be removed from over the second layer. An energy frequency that is to be absorbed by the second layer while penetrating through the first layer transparently is determined. Energy that has the determined energy frequency is applied onto the first layer so as to disrupt a bond between the first layer and the second layer at a location of application of the energy. A portion of the first layer defined at the location of application of energy is removed. A substrate preparation apparatus is also provided.