Abstract:
A method of aligning a plurality of targets is provided. The method includes generating a plurality of targets. A third phase includes the plurality of targets. The method further includes combining a first phase, a second phase, and the third phase in a volume. The first phase, the second phase, and the third phase are substantially immiscible, and the third phase is in fluid communication with the first phase and the second phase, and the first phase, the second phase, and the third phase are operable to be in a configuration of the third phase between the first phase and the second phase in the volume.
Abstract:
An article for holding a plurality of biological samples includes a substrate a substrate comprising a first surface and an opposing second surface and a plurality of reaction sites in the substrate. Each of the reaction sites extends from an opening in the first surface to an opening in the second surface. The reaction sites comprise a hexagonal shape and are configured to provide sufficient surface tension by capillary action to hold respective biological samples. The reaction sites have a density over at least a portion of the surfaces that is at least 170 holes per square millimeter. At least one of the surfaces may have a surface roughness characterized by an arithmetic average roughness (Ra) that is less than or equal to 5 nanometers.
Abstract:
A system for processing a plurality of biological samples contains a support and a temperature controller. The support is configured to hold a case that includes an inner chamber and a substrate located within the inner chamber, the substrate containing a plurality of isolated reaction sites containing one or more biological samples. The temperature controller is configured to maintain or control a temperature of at least one of the support, the case, or the one or more biological samples during an assay or reaction on the one or more biological samples. The support is also configured to maintain at least one of the surfaces of substrate at a positive angle relative to a horizontal plane during the assay or reaction.
Abstract:
Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample. Estimating the number of copies-per-unit-volume is based on the number of discrete processed sample portions determined to contain the at least one target nucleic acid therein.
Abstract:
A system for processing a plurality of biological samples contains a support and a temperature controller. The support is configured to hold a case that includes an inner chamber and a substrate located within the inner chamber, the substrate containing a plurality of isolated reaction sites containing one or more biological samples. The temperature controller is configured to maintain or control a temperature of at least one of the support, the case, or the one or more biological samples during an assay or reaction on the one or more biological samples. The support is also configured to maintain at least one of the surfaces of substrate at a positive angle relative to a horizontal plane during the assay or reaction.
Abstract:
Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample. Estimating the number of copies-per-unit-volume is based on the number of discrete processed sample portions determined to contain the at least one target nucleic acid therein.
Abstract:
A method of aligning a plurality of targets is provided. The method includes generating a plurality of targets. A third phase includes the plurality of targets. The method further includes combining a first phase, a second phase, and the third phase in a volume. The first phase, the second phase, and the third phase are substantially immiscible, and the third phase is in fluid communication with the first phase and the second phase, and the first phase, the second phase, and the third phase are operable to be in a configuration of the third phase between the first phase and the second phase in the volume.
Abstract:
A system for processing a plurality of biological samples contains a support and a temperature controller. The support is configured to hold a case that includes an inner chamber and a substrate located within the inner chamber, the substrate containing a plurality of isolated reaction sites containing one or more biological samples. The temperature controller is configured to maintain or control a temperature of at least one of the support, the case, or the one or more biological samples during an assay or reaction on the one or more biological samples. The support is also configured to maintain at least one of the surfaces of substrate at a positive angle relative to a horizontal plane during the assay or reaction.
Abstract:
A system for performing biological reactions is provided. The system includes a chip including a substrate and a plurality of reaction sites. The plurality of reaction sites are each configured to include a liquid sample of at most one nanoliter. Further, the system includes a control system configured to initiate biological reactions within the liquid samples. The system further includes a detection system configured to detect biological reactions on the chip. According to various embodiments, the chip includes at least 20000 reaction sites. In other embodiments, the chip includes at least 30000 reaction sites.