Abstract:
A wear coating is disclosed that includes a layer treated by a trifunctional organosilane. An article is also disclosed, the article having a surface to which the wear coating is applied. A method of applying the wear coating is also disclosed. In some embodiments, the organosilane is trimethylsilane and the wear coating is applied by chemical vapor deposition, followed by heat treating the wear coating in the presence of the trimethylsilane.
Abstract:
The present invention relates to a chemical vapor deposition coating, a chemical vapor deposition article, and a chemical vapor deposition method. The coating, article, and method involve thermal decomposition of dimethylsilane to achieve desired surface properties.
Abstract:
Thermal chemical vapor deposition coated articles and thermal chemical vapor deposition processes are disclosed. The thermal chemical vapor deposition coated article includes a substrate and a coating on the substrate, the coating having multiple layers and being positioned on regions of the thermal chemical vapor deposition coated article that are unable to be concurrently coated through line-of-sight techniques. The coating has a concentration of particulate from gas phase nucleation, per 100 square micrometers, of fewer than 6 particles having a dimension of greater than 0.5 micrometers. The thermal chemical vapor deposition process includes introducing a multiple aliquot of a silicon-containing precursor to the enclosed vessel with intermediate gaseous soaking to produce the coated article.
Abstract:
Chemical vapor deposition articles and processes include a chemical vapor deposition functionalization on a material, the material including an sp3 arrangement of carbon. The chemical vapor deposition functionalization is positioned to be contacted by a process fluid, a hydrocarbon, an analyte, exhaust, or a combination thereof. Additionally or alternatively, the chemical vapor deposition functionalization is not of a refrigerator shelf or a windshield.
Abstract:
Chemical vapor deposition articles and processes include a chemical vapor deposition functionalization on a material, the material including an sp3 arrangement of carbon. The chemical vapor deposition functionalization is positioned to be contacted by a process fluid, a hydrocarbon, an analyte, exhaust, or a combination thereof. Additionally or alternatively, the chemical vapor de position functionalization is not of a refrigerator shelf or a windshield.
Abstract:
Thermal chemical vapor deposition split-functionalizing processes, coatings, and products are disclosed. The thermal chemical vapor deposition split-functionalizing process includes positioning an article within an enclosed chamber, functionalizing the article within a first temperature range for a first period of time, and then further functionalizing the article within a second temperature range for a second period of time. The thermal chemical vapor deposition split-functionalized product includes a functionalization formed by functionalizing within a first temperature range for a first period of time and a further functionalization formed by further functionalizing within a second temperature range for a second period of time.
Abstract:
The present invention relates to a chemical vapor deposition coating, a chemical vapor deposition article, and a chemical vapor deposition method. The coating, article, and method involve thermal decomposition of dimethylsilane to achieve desired surface properties.
Abstract:
A wear coating is disclosed that includes a layer treated by a trifunctional organosilane. An article is also disclosed, the article having a surface to which the wear coating is applied. A method of applying the wear coating is also disclosed. In some embodiments, the organosilane is trimethylsilane and the wear coating is applied by chemical vapor deposition, followed by heat treating the wear coating in the presence of the trimethylsilane.
Abstract:
Thermal chemical vapor deposition coated articles and thermal chemical vapor deposition processes are disclosed. The article includes a substrate and a thermal chemical vapor deposition coating on the substrate. The thermal chemical vapor deposition coating includes properties from being produced by diffusion-rate-limited thermal chemical vapor deposition. The thermal chemical vapor deposition process includes introducing a gaseous species to a vessel and producing a thermal chemical vapor deposition coating on an article within the vessel by a diffusion-rate-limited reaction of the gaseous species.