Abstract:
A microelectromechanical device having a first substrate (330) of semiconductor material and a second substrate (340) of semiconductor material having a bonding recess (331) delimited by projecting portions (334), monolithic therewith. The bonding recess forms a closed cavity (324) with the first substrate. A bonding structure (336) is arranged within the closed cavity and is bonded to the first and second substrates. A microelectromechanical structure (345) is formed in a substrate chosen between the first and second substrates. The device is manufactured by forming the bonding recess in a first wafer; depositing a bonding mass in the bonding recess, the bonding mass having a greater depth than the bonding recess; and bonding the two wafers.
Abstract:
A process for manufacturing a combined microelectromechanical device (30) provides for: forming, in a die (1) of semiconductor material, at least a first (2a) and a second (2b) microelectromechanical structures; performing a first bonding phase to bond a cap (10) to the die (1) by means of a bonding region (14), to define at least a first (20a) and a second (20b) cavity at the first and, respectively, second microelectromechanical structures, the cavities being at a controlled pressure having a first value; forming an access channel (22) through the cap in fluidic communication with the first cavity to control the pressure value inside the first cavity in a distinct manner with respect to a respective pressure value inside the second cavity; performing a second bonding phase, after which the bonding region deforms to hermetically close the first cavity with respect to the access channel.
Abstract:
For manufacturing an optical microelectromechanical device (70), a first wafer (90) of semiconductor material having a first surface (100A) and a second surface (100B) is machined to form a suspended mirror structure (86), a fixed structure (74) surrounding the suspended mirror structure (86), elastic supporting elements (84A-84D) which extend between the fixed structure and the suspended mirror structure, and an actuation structure (83), coupled to the suspended mirror structure. A work wafer (10') is machined separately to form a second wafer (15) having a chamber (104) delimited by a bottom wall having a through opening (103). The second wafer is bonded to the first surface (100A) of the first wafer (90) in such a way that the chamber (104) overlies the actuation structure (83) and the through opening (103) is aligned to the suspended mirror structure (86). Furthermore, a third wafer (98) is bonded to the second surface (100B) of the first wafer to form a composite wafer device (112). The composite wafer device (112) is then diced to form an optical microelectromechanical device (70).
Abstract:
A process for manufacturing a microelectromechanical mirror device includes: in a semiconductor wafer (50), defining a support frame (2), a plate (5) connected to the support frame (2) so as to be orientable around at least one rotation axis (X) and cantilever structures (9) extending from the support frame (2) and coupled to the plate (5) so that bending of the cantilever structures (9) causes rotations of the plate (5) around the at least one rotation axis (X); forming piezoelectric actuators (10) on the cantilever structures (9); forming pads (12) on the support frame (2); and forming spacer structures (25) protruding from the support frame (2) more than both the pads (12) and the stacks of layers (15, 16, 17, 20, 21, 22) forming the piezoelectric actuators (10).