Abstract:
A liquid crystalline composite comprising a liquid crystalline polymer, particulate filler, and fibrous web. Further disclosed is a method for forming the liquid crystalline polymer composite. The liquid crystalline polymer composite is useful in circuit materials, circuits, and multi-layer circuits, economical to make, and has excellent flame retardant properties.
Abstract:
A polyurethane foam or elastomer comprises an organic polyisocyanate component, an active hydrogen-containing component reactive with the polyisocyanate component, wherein the viscosity of this component is less than about 500 cP at room temperature, a catalyst component, a surfactant, and a flame retarding composition. The components may be low VOC. A preferred flame retarding composition comprises an antimony-based compound, a halogenated, active hydrogen-containing component reactive with the polyisocyanate component, and a halogenated flame-retarding agent. Such polyurethanes are useful as gaskets, seals, padding, in automotive applications, and the like.
Abstract:
An electrically conductive composition comprises a polymeric foam and carbon nanotubes. The composition has a volume resistivity of about 10 ohm-cm to about 10 ohm-cm. In another embodiment, an electrically conductive elastomeric composition comprises an elastomer and carbon nanotubes, and has a volume resistivity of about 10 ohm-cm to about 10 ohm-cm. The polymeric foams and elastomers retain their desirable physical properties, such as compressibility, flexibility and compression set resistance. They are of particular use as that articles provide electromagnetic shielding and/or electrostatic dissipation, especially for applications involving complicated geometries, such as in computers, personal digital assistants, cell phones, medical diagnostics, and other wireless digital devices, electronic goods such as cassette and digital versatile disk players, as well as in automobiles, ships and aircraft, and the like, where high strength to weight ratios are desirable.
Abstract:
Crosslinkable liquid crystalline polymer compositions (116) for use as dielectric materials (114) in circuit materials, circuits, and multi-layer circuits (100) are disclosed. The crosslinkable liquid crystalline polymer compositions comprise crosslinkable liquid crystalline polymers that preferably comprise end groups selected from the group consisting of phenyl maleimide, nadimide, phenyl acetylene, or combinations of the foregoing. Additionally, the crosslinkable liquid crystalline polymer compositions (116) may further comprise particulate fillers (118) and/or fibrous webs (120). The crosslinkable liquid crystalline polymer compositions provided improved electrical and mechanical properties.
Abstract:
An electrical circuit material having a conductive layer disposed a substrate, wherein the substrate comprises an organic or inorganic polymer comprising a covelently bound polyhedral silsesquioxane (POSS). The substrate may further comprise an additional dispersed POSS, any other fillers including fibrous webs. Use of covelently bound POSS allow for flame retardancy in compositions having acceptable dielectric constants and dissipation factors.
Abstract:
A thermal management circuit material comprises an electrically conductive layer; a dielectric layer comprising a polymer matrix and a thermally conductive, electrically non-conductive particulate filler, wherein the dielectric layer is disposed on and in at least partial contact with the electrically conductive layer, and wherein the circuit material has a thermal conductivity of greater than or equal to about 1 watt per meter-degree Kelvin.
Abstract:
A liquid crystalline composite comprising a liquid crystalline polymer, particulate filler, and fibrous web. Further disclosed is a method for forming the liquid crystalline polymer composite. The liquid crystalline polymer composite is useful in circuit materials, circuits, and multi-layer circuits, economical to make, and has excellent flame retardant properties.