-
公开(公告)号:CN118073497A
公开(公告)日:2024-05-24
申请号:CN202410396770.6
申请日:2024-04-02
Abstract: 本发明提供一种Mi cro‑LED芯片及其制备方法。Mi cro‑LED芯片包括:衬底层;位于衬底层上的发光结构;发光结构在平行于衬底层的截面上的图形为多边形;发光结构包括:N型GaN层;位于衬底层一侧表面;I nGaN有源层,位于部分N型GaN层背离衬底层的一侧表面;P型GaN层,位于I nGaN有源层背离所述N型GaN层的一侧表面;发光结构的侧壁与衬底层的表面垂直,且在GaN六方晶系内,侧壁所在的平面属于{11‑20}的晶面族。本发明提供的Mi cro‑LED芯片的发光效率高。
-
公开(公告)号:CN117276436A
公开(公告)日:2023-12-22
申请号:CN202311222695.3
申请日:2023-09-20
Abstract: 本发明提供一种LED芯片及其制备方法。LED芯片包括:层叠的半导体衬底层、半导体缓冲层以及N型GaN层,N型GaN层远离所述半导体衬底层一侧的部分厚度中具有多孔GaN区域,多孔GaN区域具有若干孔;N型InGaN六棱锥层,阵列排布于多孔GaN区域上。本发明提供的LED芯片可以在多孔GaN区域上得到有更多In含量(超过20%)的N型InGaN六棱锥层阵列,进而得到高In含量的InGaN量子阱层,使InGaN量子阱层中In含量在25~35%,从而实现良好的红光LED。
-
公开(公告)号:CN114242771A
公开(公告)日:2022-03-25
申请号:CN202111443699.5
申请日:2021-11-30
Applicant: 厦门大学
IPC: H01L29/06 , H01L29/739 , H01L29/78
Abstract: 一种光增强碳化硅功率器件导通特性的结构,属于碳化硅功率半导体领域。提供结合碳化硅材料特性,通过顶部栅极挖孔,来实现透光,同时通过在JFET区域的底部进行高掺来实现同种掺杂的耗尽层,从而产生更多光生载流子的一种光增强碳化硅功率器件导通特性的结构。适用于双极型器件IGBT和单极型器件碳化硅MOSFET,由多个元胞并联形成,每个元胞结构包括:P型掺杂集电区/N型掺杂衬底、N型掺杂场终止层、N型掺杂漂移区、N型高掺杂JFET区、N型低掺杂JFET区、P型掺杂的阱区、N型掺杂的源区、P型掺杂的基区、氧化层、栅极电极、发射极电极、集电极/漏电极。可应用于600V以上高压领域,采用光增强结构,导通特性好。
-
公开(公告)号:CN119789653A
公开(公告)日:2025-04-08
申请号:CN202411976164.8
申请日:2024-12-30
IPC: H10H29/14 , G02B30/00 , G02B30/50 , G02B5/30 , G02B27/28 , G09F9/33 , G09F19/12 , H10H29/24 , H10H29/30 , H10H29/01 , H10H29/85 , H10H29/855 , H01L25/16 , H01L25/075 , H10H20/855 , H10H20/85
Abstract: 本发明涉及一种LED 3D显示装置及其制造方法。本发明提供的LED 3D显示装置包括:LED器件层;所述LED器件层包括若干阵列排布的LED封装结构,所述LED封装结构至少包括一组RGB三色LED芯片;偏振片层;所述偏振片层包括若干阵列排布的偏振片,所述偏振片与所述LED封装结构一一对应;其中所述偏振片包括左旋偏振片和右旋偏振片;所述左旋偏振片与所述右旋偏振片交替排列。本发明的LED 3D显示装置可扩展3D显示图像的有效视角范围,提升3D图像清晰度和亮度。
-
公开(公告)号:CN119419203A
公开(公告)日:2025-02-11
申请号:CN202411353917.X
申请日:2024-09-26
IPC: H01L25/16 , H10H20/857 , H10H20/83 , H10H20/84 , H10H20/855
Abstract: 本发明涉及微型发光二极管技术领域,公开微型发光二极管发光单元、器件及器件的制备方法。包括:驱动电路层、外延结构、第一透明导电层、钝化层、第二透明导电层、电极结构、介电材料层和金属准直结构;外延结构包括第一半导体层、有源层和第二半导体层;第一透明导电层设置在驱动电路层与外延结构之间;钝化层设置在外延结构和第一透明导电层侧壁及驱动电路层上表面;第二透明导电层覆盖外延结构及钝化层的外表面;电极结构设置在第二透明导电层上;介电材料层设置在外延结构上;金属准直结构设置在介电材料层上,形成通孔以及环形凹槽。本发明的介电材料层增大出射光临界角,提高光提取效率;金属准直结构减小发散角和光串扰,实现汇聚准直。
-
公开(公告)号:CN119277872A
公开(公告)日:2025-01-07
申请号:CN202411353891.9
申请日:2024-09-26
IPC: H10H29/03 , H10H29/02 , H01L21/66 , G06T7/00 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及发光二极管芯片转移技术领域,公开了一种发光二极管芯片的转移方法、装置、设备、介质及产品,发光二极管芯片的转移方法包括:获取目标组中的多个区块数据,区块数据包括对应的区块上的多个发光二极管芯片的参数信息,参数信息包括波长和/或亮度;将多个区块数据转化为多个第一图像信息,其中,多个第一图像信息和多个区块数据一一对应;根据第一学习模型,确定多个第一图像信息对应的区块数据的类型;将多个目标区块数据对应的区块上的发光二极管芯片转移到目标驱动基板的目标区域,其中,多个目标区块数据为多个区块数据中类型互补的区块数据。本发明在较短的时间内完成发光二极管芯片的转移的同时,减少显示屏色度差异。
-
公开(公告)号:CN119170723A
公开(公告)日:2024-12-20
申请号:CN202411282739.6
申请日:2024-09-13
Applicant: 厦门大学
Abstract: 本申请涉及深紫外LED技术领域,特别涉及一种深紫外LED复合周期性电极及其制备方法、深紫外LED。该制备方法包括以下步骤:准备芯片的外延片;对外延片的P型半导体空穴注入层的表面依次进行旋涂增粘液处理、旋涂光刻胶处理,而后进行烘烤处理;利用MLA光刻系统对外延片进行光刻处理,获得所需光刻图案,光刻图案呈等间距经纬分布,使其由若干矩形方格阵列式排布而成,矩形方格包括四条矩形边,且矩形边与矩形边的端部相交处采用圆点连接;将外延片进行I CP刻蚀后镀上导电电极材料,即得。本申请制得的深紫外LED复合周期性电极采用点线结合和复合有序的经纬排布设计,可使得正面深紫外光的透光效果显著提升,有利于获得高光提取效率的深紫外LED。
-
公开(公告)号:CN117934985A
公开(公告)日:2024-04-26
申请号:CN202311706708.4
申请日:2023-12-12
IPC: G06V10/774 , G06V10/764 , G06T7/73 , G06T7/00 , G06V10/44 , G06V10/26 , G06V10/52 , G06V10/80 , G06V10/75 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明涉及半导体技术领域,公开了半导体缺陷检测模型训练方法及半导体缺陷检测方法,包括:获取半导体样本的外场调制发光强度分布图像、样品光谱图像和荧光寿命图像;将外场调制发光强度分布图像、样品光谱图像和荧光寿命图像融合,生成半导体样品的组合图像;对组合图像进行定位分割,识别得到组合图像中的缺陷区域及类别;基于半导体样本对应的缺陷区域及类别标签和识别得到组合图像中的缺陷区域及类别,进行模型训练,得到半导体缺陷检测模型,本发明通过外场调制发光强度信息、光谱信息与荧光寿命信息结合进行缺陷检测,提高了检测效率和准确性,实现了对缺陷种类的可靠识别,为制备高效稳定的半导体光电器件提供高效的检测方案。
-
公开(公告)号:CN117747727A
公开(公告)日:2024-03-22
申请号:CN202311768650.6
申请日:2023-12-19
Abstract: 本发明提供了Micro‑LED发光器件及其制备方法。Micro‑LED发光器件包括:层叠的半导体衬底层、N型半导体层,还包括:发光量子阱层,位于N型半导体层远离半导体衬底层的一侧表面;p型半导体层,位于发光量子阱层远离半导体衬底层的一侧;第一电极;位于所述p型半导体层远离所述半导体衬底层的一侧;第二电极;位于所述p型半导体层远离所述半导体衬底层的一侧;所述第一电极和所述第二电极间隔设置;第三电极,位于所述半导体衬底层远离所述N型半导体层的一侧表面。本发明提供的Micro‑LED发光器件一方面生产成本低,且为后续工艺提供较大窗口;另一方面Micro‑LED发光器件的发光效率高,且功率损耗低。
-
公开(公告)号:CN116314478A
公开(公告)日:2023-06-23
申请号:CN202310082734.8
申请日:2023-02-06
Abstract: 本发明提供一种Micro‑LED芯片的制备方法,包括:提供衬底层;在所述衬底层的一侧依次形成层叠的N型半导体层、初始有源层和初始P型半导体层;刻蚀部分所述初始P型半导体层和部分所述初始有源层直至暴露出所述N型半导体层,且使所述初始P型半导体层形成P型半导体层,使初始有源层形成有源层,在刻蚀部分所述初始P型半导体层和部分所述初始有源层的过程中形成损伤层,所述损伤层位于所述有源层和所述P型半导体层的侧壁;对所述损伤层进行退火处理以形成修复层;对所述修复层进行超临界流体处理,以补偿所述修复层中的空位缺陷。本发明提供的Micro‑LED芯片的制备方法能够提高Micro‑LED芯片的发光效率。
-
-
-
-
-
-
-
-
-