一种基于智能语义感知的预警信息合法性检测方法及检测系统

    公开(公告)号:CN109543764A

    公开(公告)日:2019-03-29

    申请号:CN201811438885.8

    申请日:2018-11-28

    Abstract: 本发明提供一种基于智能语义感知的预警信息合法性检测方法及检测系统,包括:S1:基于深度学习的垂直领域预警文本多标准分词算法;S2:基于人机耦合形式的白名单构建与实时更新方法;S3:在线非法字符匹配算法:利用多标准分词算法对待发布预警信息进行多标准分词获得候选字符集合,结合倒排索引与树状数据结构,设计大规模文本数据层级搜索与比对算法,通过与白名单的语义对比实现预警信息文本中的非法字符的快速定位与判断。优点为:以正向合法字(词)智能感知算法取代传统的反向非法字(词)搜索算法,可以达到非法字(词)100%检测效果。基于人机耦合形式的白名单构建与实时更新,可随着预警发布系统的不断使用逐步减少对人工的依赖。

    基于气块反向追踪的大雾短期预报方法

    公开(公告)号:CN117111182A

    公开(公告)日:2023-11-24

    申请号:CN202311352643.8

    申请日:2023-10-19

    Abstract: 基于气块反向追踪的大雾短期预报方法,属于气象预报技术领域,包括以下步骤:S100:大雾分区;S200:选取预报因子;S300:样本处理;S400:建立预报模型;S500:评估计算;本发明从大雾形成机理的角度出发,利用客观方法来完成大雾分区,将出雾一致的站点划分到同一个区域,对每一个预报位置采用追踪气块的方式,获取起报时刻气块位置、气象参数等信息,与其他影响大雾出现的气象条件一起作为影响大雾形成的关键气象因子,采用多种机器学习方法进行训练,彼此间通过对训练集和测试集的预报准确性进行对比,选取预报准确率最高的模型作为最终模型,再利用最终模型通过输入实时气象数据进行大雾短期预报,提高了大雾短期预报的时效性和准确性。

Patent Agency Ranking