Abstract:
An etching method of the invention includes: a resist pattern-forming step of forming a resist layer on a target object, the resist layer being formed of a resin, the resist layer having a resist pattern; an etching step of etching the target object via the resist layer having the resist pattern; and a resist protective film-forming step of forming a resist protective film on the resist layer. The etching step is repetitively carried out multiple times. After the etching steps are repetitively carried out multiple times, the resist protective film-forming step is carried out.
Abstract:
An etching method for anisotropically structuring a substrate by means of deep reactive-ion etching (DRIE) includes several alternating successive etching steps and passivation steps. According to the invention, a fluorine gas mixture having a proportion of more than 25% up to and including 40% of fluorine, a proportion of 1% to 50% of nitrogen and a proportion of 30% up to and including 60% of a noble gas is used for etching. In addition, the invention concerns the use of such a fluorine gas mixture as well as a corresponding apparatus for structuring a substrate by means of the inventive fluorine gas mixture.
Abstract:
The invention relates to a silicon-based component with at least one reduced contact surface which, formed from a method combining at least one oblique side wall etching step with a “Bosch” etch of vertical side walls, improves, in particular, the tribology of components formed by micromachining a silicon-based wafer.
Abstract:
A producing method for a diaphragm-type resonant MEMS device includes forming a first silicon oxide film, forming a second silicon oxide film, forming a lower electrode, forming a piezoelectric film, forming an upper electrode, laminating the first silicon oxide film, the second silicon oxide film, the lower electrode, the piezoelectric film, and the upper electrode in this order on a first surface of a silicon substrate, and etching the opposite side surface of the first surface of the silicon substrate by deep reactive ion etching to form a diaphragm structure, in which the proportion R2 of the film thickness t2 of the second silicon oxide film with respect to the sum of the film thickness t1 of the first silicon oxide film and the film thickness t2 of the second silicon oxide film satisfies the following condition: 0.10 μm≦t1≦2.00 μm; and R2≧0.70.
Abstract:
Embodiments of the invention provide a substrate etching method, which includes: a deposition operation for depositing a polymer on a side wall of a silicon groove, an etching operation for etching the side wall of the silicon groove, and repeating the deposition operation and the etching operation at least twice. In the process of completing all cycles of the etching operation, a chamber pressure of a reaction chamber is decreased from a preset highest pressure to a preset lowest pressure according to a preset rule. The substrate etching method, according to various embodiments of the invention, avoid the problem of damaging the side wall, thereby making the side wall smooth.
Abstract:
A microstructured substrate includes a plurality of at least one elementary microstructure. An electrical storage device, and more particularly an all-solid-state battery, can include the microstructured substrate.
Abstract:
A method for capillary self-assembly of a plate and a carrier, including: forming an etching mask on a region of a substrate; reactive-ion etching the substrate, the etching using a series of cycles each including isotropic etching followed by surface passivation, wherein a duration of the isotropic etching for each cycle increases from one cycle to another, a ratio between durations of the passivation and etching of each cycle is lower than a ratio for carrying out a vertical anisotropic etching to form a carrier having an upper surface defined by the region and side walls defining an acute angle with the upper surface; removing the etching mask; placing a droplet on the upper surface of the carrier; and placing the plate on the droplet.
Abstract:
Methods for etching a substrate in a plasma etch reactor may include (a) depositing polymer on surfaces of a feature formed in substrate disposed in the etch reactor using first reactive species formed from a first process gas comprising a polymer forming gas; (b) etching the bottom surface of the feature of the substrate in the etch reactor using a third reactive species formed from a third process gas including an etching gas; and (c) bombarding a bottom surface of the feature with a second reactive species formed from a second process gas comprising one or more of an inert gas, an oxidizing gas, a reducing gas, or the polymer forming gas while at least one of depositing the polymer to remove at least some of the polymer disposed on the bottom surface or etching the bottom surface to at least one of chemically or physically damage the bottom surface.
Abstract:
The present disclosure is directed to a device and its method of manufacture in which a protective region is formed below a suspended body. The protective region allows deep reactive ion etching of a bulk silicon body to form a MEMS device without encountering the various problems presented by damage to the silicon caused by backscattering of oxide during over etching periods of DRIE processes.
Abstract:
A method includes a step of performing a time multiplexed etching process, wherein the last etching step of the time multiplexed etching process is of a first time duration. After performing the time multiplexed etching process, an etching step having a second time duration is performed, wherein the second time duration is greater than the first time duration.