Abstract:
In order to reduce the degree of relaxation after an optical substrate has been compacted, in particular after a longer period, substrates (51) or reflective optical elements (50), in particular for EUV lithography, with substrates (51) of this type, are proposed. These substrates (51), which have a surface region (511) with a reflective coating (54), are characterised in that, at least near to the surface region (511), the titanium-doped quartz glass has a proportion of Si—O—O—Si bonds of at least 1*1016/cm3 and/or a proportion of Si—Si bonds of at least 1*1016/cm3 or, along a notional line (513) perpendicular to the surface region (511), over a length (517) of 500 nm or more, a hydrogen content of more than 5×1018 molecules/cm3.
Abstract:
A method of forming an optical component includes depositing slurry that includes glass powder material onto a facesheet and fusing the glass powder material to a facesheet to form a first core material layer on the facesheet. The method also includes successively fusing glass powder material in a plurality of additional core material layers to build a core material structure on the facesheet. The method can include selectively depositing slurry including glass powder material over only a portion of at least one of the facesheet, the first core material layer, and/or the one of the additional core material layers. Depositing the slurry can include extruding the slurry from an extruder.
Abstract:
The present disclosure is directed to a method of making an optical fiber with improved bend performance, the optical fiber having a core and at least one cladding layer, and a chlorine content in the in the last layer of the at least one cladding layer that is greater than 500 ppm by weight. The fiber is prepared using a mixture of a carrier gas, a gaseous chlorine source material and a gaseous reducing agent during the sintering of the last or outermost layer of the at least one cladding layer. The inclusion of the reducing gas into a mixture of the carrier gas and gaseous chlorine material reduces oxygen-rich defects that results in at least a 20% reduction in TTP during hydrogen aging testing.
Abstract:
Layered glass structures and fabrication methods are described. The methods include depositing soot on a dense glass substrate to form a composite structure and sintering the composite structure to form a layered glass structure. The dense glass substrate may be derived from an optical fiber preform that has been modified to include a planar surface. The composite structure may include one or more soot layers. The layered glass structure may be formed by combining multiple composite structures to form a stack, followed by sintering and fusing the stack. The layered glass structure may further be heated to softening and drawn to control linear dimensions. The layered glass structure or drawn layered glass structure may be configured as a planar waveguide.
Abstract:
Titania-doped quartz glass is manufactured by mixing a silicon-providing reactant gas and a titanium-providing reactant gas, preheating the reactant gas mixture at 200-400° C., and subjecting the mixture to oxidation or flame hydrolysis. A substrate of the glass is free of concave defects having a volume of at least 30,000 nm3 in an effective region of the EUV light-reflecting surface and is suited for use in the EUV lithography.
Abstract:
Ultralow expansion titania-silica glass. The glass has high hydroxyl content and optionally include one or more dopants. Representative optional dopants include boron, alkali elements, alkaline earth elements or metals such as Nb, Ta, Al, Mn, Sn Cu and Sn. The glass is prepared by a process that includes steam consolidation to increase the hydroxyl content. The high hydroxyl content or combination of dopant(s) and high hydroxyl content lowers the fictive temperature of the glass to provide a glass having a very low coefficient of thermal expansion (CTE), low fictive temperature (Tf), and low expansivity slope.
Abstract:
On the basis of a known method for producing a blank of titanium-doped glass with a high silica content (glass) for a mirror substrate for use in EUV lithography which has a surface region that has an outer contour, is intended to be provided with a reflective coating and is specified as a highly loaded zone when the mirror substrate is used as intended, in order to provide a blank which can be produced at low cost and nevertheless meets high requirements with respect to homogeneity and freedom from blisters and striae, a procedure which comprises the following method steps is proposed: (a) producing a front body of titanium-doped high-quality glass with dimensions more than large enough to enclose the outer contour, (b) producing a cylindrical supporting body from titanium-doped glass, (c) bonding the front body and the supporting body to form a composite body, and (d) working the composite body to form the mirror substrate blank, wherein the step of producing the front body comprises a homogenizing process involving twisting a starting body obtained in the form of a strand by flame hydrolysis of a silicon-containing compound to form a front body blank, and the supporting body is formed as a monolithic glass block with less homogeneity than the front body.
Abstract:
The Ti3+ ions present in Ti-doped silica glass cause a brown staining of the glass, causing inspection of the lens to become more difficult. Known methods for reducing Ti3+ ions in favor of Ti4+ ions in Ti-doped silica glass include a sufficiently high proportion of OH-groups and carrying out an oxygen treatment prior to vitrification, which both have disadvantages. In order to provide a cost-efficient production method for Ti-doped silica glass, which at a hydroxyl group content of less than 120 ppm shows an internal transmittance (sample thickness 10 mm) of at least 70% in the wavelength range of 400 nm to 1000 nm, the TiO2—SiO2 soot body is subjected to a conditioning treatment with a nitrogen oxide prior to vitrification. The blank produced in this way from Ti-doped silica glass has the ratio Ti3+/Ti4+≦5×10−4.
Abstract:
A glass article for use in Extreme Ultra-Violet Lithography (EUVL) is provided. The glass article includes a silica-titania glass having a compositional gradient through the glass article, the compositional gradient being defined by the functions: [TiO2]=(c+f(x,y,z)), and [SiO2]=(100−{c+f(x,y,z)}−δ(x,y,z)) wherein [TiO2] is the concentration of titania in wt. %, [SiO2] is the concentration of silica in wt. %, c is the titania concentration in wt. % for a predetermined zero crossover temperature (Tzc), f(x, y, z) is a function in three-dimensional space that defines the difference in average composition of a volume element centered at the coordinates (x, y, z) with respect to c, and δ(x, y, z) is a function in three-dimensional space that defines the sum of all other components of a volume element centered at the coordinates (x, y, z).
Abstract:
A method for manufacturing an SiO2—TiO2 based glass upon a target by a direct method, includes: an ingot growing step of growing an SiO2—TiO2 based glass ingot having a predetermined length on the target by flame hydrolysis by feeding a silicon compound and a titanium compound into an oxyhydrogen flame, wherein the ingot growing step includes: a first step of increasing a ratio of a feed rate of the titanium compound to a feed rate of the silicon compound as the SiO2—TiO2 based glass ingot grows until the ratio reaches a predetermined value; and a second step of gradually growing the SiO2—TiO2 based glass ingot after the ratio has reached the predetermined value in the first stage with keeping the ratio within a predetermined range.