Abstract:
An x-ray emitter has a rotating envelope x-ray tube that is rotatably mounted on a shaft in an emitter housing filled with a cooling and insulating agent, and a drive apparatus coupled to the rotating envelope x-ray tube by the shaft. The emitter housing is hermetically sealed and the drive apparatus includes a predetermined number of permanent magnets as well as electromagnets corresponding thereto. The permanent magnets are arranged within the emitter housing and alternate annularly around the shaft in terms of their polarity. The electromagnets are arranged on an exterior of the emitter housing and can be controlled by a control and regulating unit to produce a rotating alternating field. The x-ray emitter is suited to high rotational speeds and/or to high pressures of the cooling and insulating agent in the emitter housing.
Abstract:
An X-ray tube anode assembly and an X-ray tube assembly are disclosed that include an X-ray target and a drive assembly configured to provide an oscillatory motion to the X-ray target. The drive assembly is configured to provide an oscillatory motion to the target assembly.
Abstract:
An x-ray tube has a vacuum housing supported so that it can rotate around a rotation axis, an anode that is arranged within the vacuum housing and that is connected in a rotationally fixed manner with the vacuum housing. The anode has an anode surface fashioned substantially in the shape of a ring. The center axis of which anode surface corresponds to the rotation axis. A cathode is mounted within the vacuum housing such that it can be rotated around the rotation axis. The cathode has a cathode surface fashioned substantially in the shape of a ring. The center axis of which cathode surface corresponds to the rotational axis. The cathode surface is arranged opposite the anode surface. A first actuator rotates the vacuum housing around the rotation axis with a first rotation speed ω1. A second actuator rotates the cathode around the rotation axis with a second rotation speed ω2, wherein ω2
Abstract:
An apparatus for use in a radiation procedure includes a radiation filter having a first portion and a second portion, the first and the second portions forming a layer for filtering radiation impinging thereon, wherein the first portion is made from a first material having a first x-ray filtering characteristic, and the second portion is made from a second material having a second x-ray filtering characteristic. An apparatus for use in a radiation procedure includes a first target material, a second target material, and an accelerator for accelerating particles towards the first target material and the second target material to generate x-rays at a first energy level and a second energy level, respectively.
Abstract:
A field emission cathode has a field emitter and an extraction grid, and the field emitter and the extraction grid can be moved relative to one another. Such a field emission cathode is highly durable and exhibits a longer lifespan. An x-ray tube has a field emission cathode composed of a field emitter and an extraction grid that can be moved relative to one another. Such an x-ray tube is highly durable and exhibits a longer lifespan.
Abstract:
A cathode has a thermionic emitter composed of a material that emits electrons upon being heated, and an emission layer, composed of a material that has a lower electron work function than the material of the thermionic emitter, is applied on said thermionic emitter so as to at least partially cover the thermionic emitter. Such a cathode has a high electron emission with simultaneously improved focusing and a longer lifespan.
Abstract:
A rotary anode x-ray radiator has an anode produced from a first material as well as a cathode. A structure for accommodation of at least one heat conductor element produced from a second material is provided on an external side of the anode facing away from the cathode, in an annular segment situated opposite the anode. The second material exhibits a higher heat conductivity than the first material. The heat conductor elements are accommodated in the structure to form expansion gaps.
Abstract:
An x-ray radiator has a vacuum housing that can rotate around an axis, a cathode that thermionically emits electrons upon irradiation thereof by a laser beam, an anode that emits x-rays upon being struck by the electrons, an insulator that is part of the vacuum housing and that separates the cathode from the anode, electrodes or terminals to apply a high voltage between the anode and the cathode to accelerate the emitted electrons toward the anode to form an electron beam, a drive arrangement for rotation of the vacuum housing around its axis, an arrangement for cooling components of the x-ray radiator, and an arrangement that directs and focuses the laser beam from a stationary source that is arranged outside of the vacuum housing onto a spatially stationary laser focal spot on the cathode.
Abstract:
A device for generation of x-ray radiation has one or more cold electron sources as a cathode and at least one x-ray target as an anode that are arranged in an evacuable housing. Upon application of an electrical voltage between cathode and anode, electrons emitted from the electron source are accelerated in an electron beam onto the x-ray target. A device for reduction of the proportion of positive ions in the region of the electron source is arranged between the electron source and the x-ray target in the housing. The device exhibits a long lifespan with good focusing capability and fast modulation capability of the electron beam.
Abstract:
An x-ray unit has an x-ray radiator having an anode that emits x-rays upon being struck by electrons, a cathode that thermionically emits electrons upon irradiation thereof by a laser beam, electrical connections for application of a high voltage between the anode and the cathode to accelerate the emitted electrons toward the anode as an electron beam, a vacuum housing that can be rotated around an axis, an insulator that is part of the vacuum housing and that separates the cathode from the anode, a drive that rotates the vacuum housing around its axis, an arrangement for cooling components of the x-ray radiator, and an arrangement that directs the laser beam from a stationary source, arranged outside of the vacuum housing, onto a spatially stationary laser focal spot on the cathode and that focuses the laser beam. The x-ray unit furthermore has a control circuit with which an operating property of the x-ray unit is adjusted and at least one measurement element for measurement of a measurement quantity is effectively correlated with the temperature of the cathode. The control circuit adjusts the operating property dependent on the measurement of the measurement quantity.