Abstract:
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Abstract:
Magnification errors are reduced in the required range of magnification in electric charged particle beam application apparatuses and critical dimension measurement instruments. To achieve this, a first image, whose magnification for the specimen is actually measured, is recorded, a second image, whose magnification for the specimen is unknown, is recorded, and the magnification of the second image for the first image is analyzed by using image analysis. Thereby, the magnification of the second image for the specimen is actually measured. Then, magnification is actually measured in the whole range of magnification by repeating the magnification analysis described above by taking the second image as the first image. Actually measuring the magnification of images for the specimen in the whole range of magnification and calibrating the same permits a reduction of magnification errors by a digit.
Abstract:
A method for accurately measuring feature sizes and quantifying the beam spot size in a CDSEM at real time is provided. The inventive method is based on a scanning microscope and it works on both conductive and non-conductive features. The measurement of conductive feature includes first providing a conductive feature on a surface of a substrate (the substrate maybe an insulator, a semiconductor or a material stack thereof). The conductive feature is then connected to ground and thereafter an electron beam probe raster scans the sample. When the electron beam probe hits the conductive feature the spot will have a negative potential. The potential difference between the spot and the ground will induce an electrical current flow. When the electrical beam is off the conductive feature, there will be no current flow. Therefore, by measuring the current response to the location of the beam spot, the dimension of the conductive feature can be derived.
Abstract:
The invention provides a method for automatically aligning a beam of charged particles with an aperture. Thereby, a defocusing is introduced and a signal calculated based on an image shift is applied to a deflection unit. Further, a method for correction of astigmatism is provided. Thereby, the sharpness is evaluated for a set of frames generated whilst varying the signals to a stigmator.
Abstract:
One embodiment described relates to a method of electron beam imaging of a target area of a substrate. An electron beam column is configured for charge-control pre-scanning using a primary electron beam. A pre-scan is performed over the target area. The electron beam column is re-configured for imaging using the primary electron beam. An imaging scan is then performed over the target area. Other embodiments are also described.
Abstract:
Image evaluation method capable of objectively evaluating the image resolution of a microscope image. An image resolution method is characterized in that resolution in partial regions of an image is obtained over an entire area of the image or a portion of the image, averaging is performed over the entire area of the image or the portion of the image, and the averaged value is established as the resolution evaluation value of the entire area of the image or the portion of the image. This method eliminates the subjective impressions of the evaluator from evaluation of microscope image resolution, so image resolution evaluation values of high accuracy and good repeatability can be obtained.
Abstract:
To acquire defect images even when a defect exists below an optically transparent film, an electron optical system of an electron microscope is set to a first imaging condition. A defect position of a specimen is set so as to fall within the visual field of the electron microscope, using position data of a defect of the specimen. The position of the defect is imaged by the electron microscope set to the first imaging condition to obtain a first image corresponding to the defect position. The first image is processed to determine whether a defect exists. The electron optical system is then set to a second imaging condition on the basis of the result of determination. A point imaged under the first imaging condition is imaged by the electron microscope set to the second imaging condition to acquire a second image corresponding to a defect position.
Abstract:
The present invention relates to an electron microscope which reduces a difference in measured values that occur due to a difference in resolution that cannot be fully adjusted which exists among electron microscopes, or occurs as time elapses, and a method for measuring dimensions. An operator adapted to compensate for changes of an electron image to be generated due to a difference in probe diameter is obtained in advance from electron images of one reference sample created by electron microscopes having different resolution (probe diameter). Then a compensation-measurement electron image which is equivalent to an electron image created under the same probe diameter by applying the operator for compensation, and the compensation-measurement electron image is used for measuring the dimensions.
Abstract:
Electron beam is irradiated to a wafer in the midst of steps at predetermined intervals by a plurality of times under a condition in which a junction becomes rearward bias and a difference in characteristic of a time period of alleviating charge in the rearward bias is monitored. As a result, charge is alleviated at a location where junction leakage is caused in a time period shorter than that of a normal portion and therefore, a potential difference is produced between the normal portion and a failed portion and is observed in a potential contrast image as a difference in brightness. By consecutively repeating operation of acquiring the image, executing an image processing in real time and storing a position and brightness of the failed portion, the automatic inspection of a designated region can be executed. Information of image, brightness and distribution of the failed portion is preserved and outputted automatically after inspection.
Abstract:
The invention provides a method for automatically aligning a beam of charged particles with an aperture. Thereby, the beam is defelcted to two edges of the aperture. From the signals required to obtain an extinction, a correction deflection field is calculated. Furter, a method for automatically aligning a beam of charged particles with an optical axis is provided. Thereby a defocusing is introduced and a signal calculated based on an introduced image shift is applied to a deflection unit. Further, a method for correction of the astigmatism is provided. Thereby the sharpness is evaluated for a sequence of frames measured whilst varying the signals to a stigmator.