Abstract:
The invention provides an electron source suitable for use in a charged-particle apparatus, in which source a beam of electrons can be extracted from an electrode that is subjected to at least one of an electric potential, thermal excitation and photonic excitation, whereby at least part of the electrode comprises semiconductor material having a conduction band that is quantized into discrete energy levels. Such a source enjoys a relatively low energy spread, typically much smaller than that of a Cold Field Emission Gun (CFEG). The semiconductor material may, for example, comprise a semiconductor nanowire including InAs and GaInAs.
Abstract:
In one aspect, the present invention relates to a microfluidic chamber. In one embodiment, the microfluidic chamber has a first sub-chamber and at least one second sub-chamber. The first sub-chamber has a first window and a second window. Both the first window and the second window are transparent to electrons of certain energies. The second window is positioned substantially parallel and opposite to the first window defining a first volume therebetween. The first window and the second window are separated by a distance that is sufficiently small such that an electron beam that enters from the first window can propagate through the first sub-chamber and exit from the second window. The at least one second sub-chamber is in fluid communication with the first sub-chamber and has a second volume that is greater than the first volume of the first sub-chamber.
Abstract:
The invention provides an electron source suitable for use in a charged-particle apparatus, in which source a beam of electrons can be extracted from an electrode that is subjected to at least one of an electric potential, thermal excitation and photonic excitation, whereby at least part of the electrode comprises semiconductor material having a conduction band that is quantized into discrete energy levels. Such a source enjoys a relatively low energy spread, typically much smaller than that of a Cold Field Emission Gun (CFEG). Said semiconductor material may, for example, comprise a semiconductor nanowire. Examples of suitable semiconductor materials for such a nanowire include InAs and GaInAs.
Abstract:
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.
Abstract:
The disclosed subject matter relates to testing a sample by means of a particle beam microscope in which the sample is scanned in a point-wise manner by a focused beam of charged particles thereby generating imaging signals. The particle beam dose applied per scanning point is changed during scanning.
Abstract:
A confocal scanning transmission electron microscope which includes an electron illumination device providing an incident electron beam propagating in a direction defining a propagation axis, and a precision specimen scanning stage positioned along the propagation axis and movable in at least one direction transverse to the propagation axis. The precision specimen scanning stage is configured for positioning a specimen relative to the incident electron beam. A projector lens receives a transmitted electron beam transmitted through at least part of the specimen and focuses this transmitted beam onto an image plane, where the transmitted beam results from the specimen being illuminated by the incident electron beam. A detection system is placed approximately in the image plane.