Abstract:
A display device includes a substrate on which a plurality of pixels are arranged and a circuit for displaying images with respect to each pixel is formed, a substrate terminal as a terminal formed on the substrate, and an electronic component terminal as a terminal of an electronic component electrically connected to the terminal via an anisotropic conductive film. A conductive region that conducts to the anisotropic conductive film in the substrate terminal has a light transmissive part in which a material having light transmissivity penetrates the substrate surface in a perpendicular direction.
Abstract:
A method of making a printed circuit board includes providing a substrate; providing a circuit design; determining non-conducting intersections between each of a plurality of conductive traces; forming a first set of conductive traces on the substrate; applying insulation material on the first set of traces at each of the non-conducting intersections; and forming a second set of conductive traces over the first set of traces and insulating material.
Abstract:
A photoelectric conductive motherboard with electronic modules. The multilayer board conducts electricity to provide power for the individual modules, and concurrently propagates light allowing the modules to communicate with each other by an integrated array of light emitters and receivers that are paired by wavelength and intensity. Large amounts of information can be transmitted between the modules simultaneously, at extremely high speeds, without the need for additional hardware.
Abstract:
A method for fabricating a peripheral wiring unit of a touch panel includes the following steps: (a) forming a transparent conductive layer on a substrate, the substrate including a peripheral region and a window region surrounded by the peripheral region, and forming a photosensitive conductive layer on the peripheral region of the substrate, such that the photosensitive conductive layer at least partially overlies the transparent conductive layer; (b) exposing the photosensitive conductive layer by using a photomask; and (c) developing the exposed photosensitive conductive layer to form a peripheral wiring unit on the peripheral region of the substrate.
Abstract:
There is provided a transparent conductive film which comprises: a film substrate; a plurality of transparent conductor patterns formed on the film substrate; and a pressure-sensitive adhesive layer wherein the transparent conductor patterns are embedded. The plurality of transparent conductor patterns respectively have a two-layer structure wherein a first indium tin oxide layer and a second indium tin oxide layer are laminated on the film substrate in this order, and the first indium tin oxide layer has a greater tin oxide content than the second indium tin oxide layer does. The first indium tin oxide layer has a smaller thickness than the second indium tin oxide layer does.
Abstract:
A transparent display panel, and a method of manufacturing the transparent display panel are discussed. The transparent display panel according to one embodiment includes a substrate; a driving element formed in a display pixel area on the substrate; a wiring electrode formed in the display pixel area and connected to the driving element; and a transparent wiring electrode formed in a transmissive area on the substrate, the transparent wiring electrode being extended to connect to the wiring electrode in the display pixel area.
Abstract:
A wiring substrate includes ceramic layers and a conductive member. The ceramic layers have an uppermost ceramic layer and a lowermost ceramic layer. The conductive member includes an upper conductive layer disposed on an upper surface of the uppermost ceramic layer, an internal conductive layer interposed between the ceramic layers, and a lower conductive layer disposed on a lower surface of the lowermost ceramic layer. The conductive member defines vias electrically connecting the upper conductive layer, the internal conductive layer, and the lower conductive layer. A total number of a first vias connected to the lower conductive layer is larger than a total number of a second vias connected to the upper conductive layer.
Abstract:
The embodiments of the invention disclose a touch screen, a method for producing a touch screen, and a touch display device, which relate to a field of display. The touch screen does not need bridging, have high transmittance, and are simple in process, which can not only reduce the production cost but also achieve a high yield of mass production. The touch screen as provided in the embodiments of the invention comprises: a transparent substrate; a first patterned transparent eclectically conductive layer; a patterned insulating layer and a second patterned transparent eclectically conductive layer, which are formed above said transparent substrate successively, wherein among said first patterned transparent electrically conductive layer and said second patterned transparent electrically conductive layer, one is formed with a plurality of drive lines, and the other is formed with a plurality of induction lines; the pattern of said insulating layer is identical with that of said first patterned transparent electrically conductive layer, or identical with that of said second patterned transparent electrically conductive layer.
Abstract:
Discoloration is suppressed in a wiring substrate including a conductive member including silver. A wiring substrate includes a ceramic layer and a conductive member including a conductive layer disposed on an upper surface of the ceramic layer. The conductive member includes silver and at least a portion of an upper surface of the conductive layer is covered with a covering layer. The covering layer includes an inorganic reflecting layer and a glass layer stacked on the inorganic reflecting layer.
Abstract:
A barrier layer includes a variable-composition nickel alloy layer with a minor constituent of boron, carbon, phosphorus, and tungsten varying throughout the nickel alloy layer in a direction from the bottom surface to the top surface of the nickel alloy layer.