Abstract:
A multi-layer micro-printed circuit board (PCB) is disclosed, which defines a magnetic component, such as a transformer, using planar technology. Instead of using the traditional twelve-layer PCB incorporating both a primary and a secondary winding, this invention stacks multiple PCBs, each having four or six layers and each including a single winding (either the primary or the secondary). The PCBs are stacked in an offset arrangement such that the pins penetrating the PCB or PCBs including the primary winding or windings do not penetrate the PCB or PCBs including the secondary winding or windings. Additionally, this offset arrangement prevents the pins penetrating the secondary PCBs from penetrating the primary PCBs in the same manner. This offset configuration thereby avoids significant flashover problems associated with current planar components. Moreover, the invention describes an arrangement whereby a jumper or other connection can be used to connect the windings in a series or in a parallel configuration allowing the user to configure the component according to user-required parameters.
Abstract:
A method allowing for the inexpensive automated construction of interconnections between circuit boards is provided. According to the present invention, printed circuit pins are inserted in a circuit board from the top (component side). Provided the heads of the pins are thin enough to lie beneath a solder stencil, the pins may be pre-installed on the circuit board and solder applied to the pins at the same time solder is applied to other regions of the board. Thus, known surface mount techniques may be employed to form solder connections between the pins and conductive traces on the circuit board, which facilitates the automation of the previously manual operation of soldering the printed circuit pins separately.
Abstract:
A wiring unit 1 is provided with a plurality of printed circuit boards 2 which are successively stacked and pin units 3. The printed circuit boards 2 each has a conductor pattern 7 formed on the surface 6a of an insulating plate 6. The conductor pattern 7 is composed of a first plurality of belt-like conductors 11 and a second plurality of belt-like conductors 12. Through-holes 13 are formed at points 14 where the belt-like conductors 11 and 12 cross each other. The pin units 21 each is composed of a conductive pin 20 and a C-bush 21. The C-bush 21 is provided with a pair of spring segment segments 24. The C-bush 21 is press-fit into the through-hole 13 to sandwich the printed circuit board 2 between the pair of spring segments 24. The C-bush 21 is communicated with the conductor pattern 7. The pin 20 is inserted into the through-hole 13 into which the C-bush 21 is press-fit. The conductive pin 20 is communicated with the C-bush 21. In this configuration, the wiring unit can be minimized in production cost and size.
Abstract:
An electrical contact that is mounted on a printed circuit board to provide an electrical connection to the printed circuit board. The contact has the structural integrity of a through-hole component with the capability of being soldered to the circuit board using a surface mount reflow process. The contact includes a pair of elongated, conductive pins with a base disposed therebetween, and a solder preform supported on one of the conductive pins adjacent the base. The pin supporting the solder preform is insertable into a plated-through hole on the circuit board so that the solder preform can be reflowed into the hole along the pin to form a solder joint between the contact and the hole. The contact may include a retainer to secure the solder preform to the pin and the end of the base adjacent the pin may be beveled to facilitate gas ventilation from the hole during the soldering process. The base may be configured so that it can be grasped with a test instrument or support a wire connection to the contact. The contact may be symmetrical so that the solder preform can be supported on either conductive pin.
Abstract:
A socket for an integrated circuit which is used for attaching the integrated circuit to a socket mounted on a primary wiring board with an intermediate wiring board interposed therebetween, an adapter for an integrated circuit utilizing the integrated circuit socket, and an integrated circuit assembly utilizing the integrated circuit adapter. The integrated circuit socket includes: a housing to be directly fitted with the integrated circuit; a long insertion pin which is to be inserted through the intermediate wiring board and to be fitted in the socket of the primary wiring board; a short insertion pin which is to be inserted through the intermediate wiring board but not to reach the socket of the primary wiring board; and a surface-mount pin which is to be connected to a surface of the intermediate wiring board opposed to the housing; the long insertion pin, the short insertion pin and the surface-mount pin being implanted in the housing.
Abstract:
A substrate and electrical connector assembly including a unitary panel structure with metal conductors having a rigid main body portion, a rigid marginal edge portion, and a thin flexible section extending between the rigid main body portion and the rigid marginal edge portion. The assembly also includes an at least one conductive lead deposited on a surface of the plastic panel structure which extends from the rigid main body portion across the flexible section to the rigid marginal edge portion. Further included is an at least one conductive terminal affixed to the rigid marginal edge portion which is in electrical connection with the at least one conductive lead. The at least one conductive terminal is adapted to receive a mating connector. The flexible section enables the rigid marginal edge portion to move relative to the rigid main body portion.
Abstract:
A miniaturized high frequency switching device is capable of giving an optimum over-all impedance over the length of a signal path while compensating for inevitable impedance variation seen in a particular segment of the signal path. The switching device includes a contact block having fixed contacts and a movable contact. The fixed contacts and the movable contact are surrounded by an electromagnetic shield which is supported on a conductor base to be grounded therethrough for isolating the current path from a surrounding electromagnetic field. The fixed contacts are formed respectively on one ends of terminal pins provided for electrical connection to an external load circuit operating on high frequency signals. The terminal pin extends through an insulation ring fitted in the conductor base so as to be electrically insulated therefrom and form the signal path flowing a high frequency current. An impedance compensating structure is provided in the contact block for differentiating a first impedance at a first segment of a limited length along the terminal pin from a second impedance inherent to a second segment immediately adjacent the first segment so as to give a target over-all impedance, which is between the first and second impedance, over the full length of the terminal pin.
Abstract:
A fastener for an electrical connector. The fastener (10) includes a fastener body (12) having an opening (16) therethrough for receiving a pin (21). The fastener body (12) includes a plurality of gripping elements (14) protruding into the hole (16) for securing the fastener (10) to the pin (21) when disposed therebetween. The fastener (10) is then soldered to the pin (21) and to a mounting surface (34), such as a printed circuit board, by known soldering techniques.
Abstract:
An electronic module comprises (a) an electrical assembly of electrical components and a cap. The cap surrounds a portion of the electrical assembly of electrical components to form a pocket between a portion of the electrical assembly of electrical components and the cap. The cap has at least one sidewall, each of the at least one sidewalls having an end, one of at least one sidewalls proximately positioned to at least one electrical lead and having at least one notch positioned in the end, the pocket filled with an encapsulant. A process comprises providing a cap and filling the cap with encapsulant, placing an electrical assembly of electrical components in the cap filled with the preselected amount of encapsulant, and allowing the electrical assembly to seat to a proper depth.
Abstract:
An electronic package for an integrated circuit (IC). The package has a plurality of first pins extending from a laminated plastic/printed circuit board substrate. The pins are coupled to the integrated circuit and provide a means for mounting the package to an external printed circuit board. The package also has an internal circuit board that is coupled to both the substrate and the IC by a plurality of second pins. Mounted to the circuit board are passive and/or active electrical elements that are connected to the integrated circuit through the second pins. Some of the second pins may extend entirely through the substrate to directly couple the internal circuit board and electrical elements to the external printed circuit board. To improve the thermal impedance of the package, the integrated circuit is mounted to a heat slug which can be attached to a heat sink. The heat sink may also provide a substrate for the internal circuit board.