Abstract:
The invention discloses design concepts and means and methods that can be used for enhancing the reliability and extending the operating life of electronic devices, and assemblies incorporating such devices, and substrates and/or PCBs, especially if such assemblies are exposed to severe environmental conditions such as thermal cycling or power cycling. The main thrust of the invention is to provide flexible joints, such as columns, between the attached components, and preferably to orient such joints, so that they would present their softest bending direction towards the thermal center or fixation point of the assemblies. Joints with rectangular or elongated cross-section are preferred, and they should be oriented so that the wide face of each joint would be facing the thermal center, perpendicular to the thermal deformation ray emanating from the thermal center towards the center of each respective joint. The concepts apply equally to leadless packages as well as to leaded packages.
Abstract:
An electronic device comprises a semiconductor device having a package substrate with bumps. The semiconductor device is bonded to a mounting substrate by flip-chip bonding. A standoff member supports the package substrate on the mounting substrate with a predetermined standoff between the package substrate and the mounting substrate. The standoff member comprises a hole provided in the mounting substrate, an insertion portion provided to be contained in the hole, and a standoff portion provided to contact and support the package substrate such that the standoff portion has a height, equivalent to the predetermined standoff, on the mounting substrate and enables relative displacement of the package substrate to the mounting substrate.
Abstract:
A stand-off mounting apparatus includes an insulative carrier for off-board mounting of leaded or surface-mount components, particularly large temperature-sensitive discrete components such as capacitors. The carrier has a component-mounting surface that is elevated relative to the circuit board, and is positioned with respect to the circuit board such that the circuit board area under the mounting surface of the carrier is available for the placement of smaller non-temperature-sensitive components. The off-board components are mounted on the component-mounting surface of the carrier, and the carrier may include support features for providing additional mechanical support for the components. Electrical leads for electrically coupling the elevated components to the circuit board may be insert-molded in the carrier, or may be inserted into plated through-holes in the carrier.
Abstract:
A reflowable camera module has a set of solder joints formed on a bottom surface of the camera module that provide electrical signal and power connections between the camera module and a printed circuit substrate. The solder joints are susceptible to failure caused by shear forces, particularly in corner regions. Additional localized mechanical supports are provided to protect those solder joints carrying power and electrical signals for the camera module. The localized mechanical supports are formed outside of a region containing the solder joints carrying power and electrical signals. The localized mechanical supports may include dummy solder joints formed in corner regions and/or dummy leads used to support the camera module. Solder joint reliability is enhanced without requiring the use of an underfill encapsulant.
Abstract:
According to one embodiment, a printed circuit board includes a printed wiring board and a connector. The connector includes a housing, a lead received inside the housing, an insertion section which is provided in the housing and to which the printed wiring board is inserted, and a rotating mechanism. The rotating mechanism moves the lead to a first position in which the lead is separated from the printed wiring board by abutting the lead and moves the lead to a second position in which the lead is connected to the pad of the printed wiring board via the solder by rotating and separating from the lead when the printed wiring board is inserted into the insertion section.
Abstract:
A flip chip mounting body in which a circuit substrate having a plurality of connection terminals and an electronic part (semiconductor chip) having a plurality of electrode terminals are aligned face to face with each other, with a resin composition composed of solder powder, a resin and a convection additive being sandwiched in between, while a means such as spacers is interposed in between so as to provide a uniform gap between the two parts, or the electronic part (semiconductor chip) is placed inside a plate-shaped member having two or more protruding portions, so that the solder powder is allowed to move through boiling of the convection additive and to be self-aggregated to form a solder layer, thereby electrically connecting the connection terminals and the electrode terminals; and a mounting method for such a mounting body.
Abstract:
A semiconductor package mounted on a printed circuit board using improved-reliability solder joints is described. The semiconductor package includes a lead frame pad and lead frame lead attached to the solder joints, a semiconductor chip mounted on top of the lead frame pad, wires electrically connecting the semiconductor chip and the lead frame lead, an epoxy molding compound that exposes the lower portion surface of the lead frame pad and part of the lead frame lead, and protrusions fixed to the lower portion surface of the epoxy molding compound and positioned between the solder joints, with the protrusions supporting the semiconductor package when the epoxy molding compound is mounted on the printed circuit board.
Abstract:
Provided is a printed circuit. The printed circuit includes a base layer, a plurality of bonding pads formed on the base layer, and an insulation barrier formed between the bonding pads. The insulation barrier prevents a short circuit caused by whisker growth on solder portions electrically connecting the bonding pads to bonding portions of an electronic element.
Abstract:
A structure of Ball Grid Array package (BGA) is provided. The plurality of bumps are attached on a substrate when processed the surface mount technology (SMT) may get stronger support, avoid the assembly structure disintegration when bearing an external force. When user uses a semi-conductor module, the assembly structure will not be damaged by external force.
Abstract:
Interconnect assemblies and methods for forming and using them. In one example of the invention, an interconnect assembly comprises a substrate, a resilient contact element and a stop structure. The resilient contact element is disposed on the substrate and has at least a portion thereof which is capable of moving to a first position, which is defined by the stop structure, in which the resilient contact element is in mechanical and electrical contact with another contact element. In another example of the invention, a stop structure is disposed on a first substrate with a first contact element, and this stop structure defines a first position of a resilient contact element, disposed on a second substrate, in which the resilient contact element is in mechanical and electrical contact with the first contact element. The stop structure may be formed as a sheet with openings and applied to an unsingulated semiconductor wafer with resilient contacts located in the openings.