Abstract:
The present invention is intended to solve a problem that a coating film has an uneven thickness in the case where a coating target 1 has a stepped portion extending in a predetermined direction on its coating surface. To solve the problem, a follow-up coating is performed along the stepped portion S extending in the predetermined direction after coating of the entire coating surface of the coating target 1 so that paint mist adheres more to a relatively-recessed side of the stepped portion S.
Abstract translation:本发明旨在解决在涂布对象物1具有在其涂布面上沿预定方向延伸的阶梯部分的情况下涂布膜具有不均匀厚度的问题。 为了解决这个问题,在涂覆目标1的整个涂覆表面涂覆后,沿着预定方向延伸的阶梯部分S进行后续涂层,使得涂料雾更多地附着到阶梯部分的相对凹入的一侧 S.
Abstract:
A nanoparticle coated hydrogel may be formed by a method of electrospraying nanoparticles on to a surface includes providing a drug and polymer combination in solvent to an inner capillary of a coaxial dual capillary spray nozzle. A coating with a drug that releases over time may be provided. Open and closed matrixes may be selectively formed to help modify time release periods.
Abstract:
This disclosure describes the application of a supplemental corona source to provide surface charge on submicrometer particles to enhance collection efficiency and micro-structural density during electrostatic collection.
Abstract:
Described are coating material compositions comprising an isocyanate group-containing component, a hydroxyl group-containing component, and a zinc (1-methylimidazole)bis(2-ethylhexanoate) complex. Also described is the use of a zinc (1-methylimidazole)bis(2-ethylhexanoate) complex as a catalyst system for the urethane reaction in coating material compositions.
Abstract:
A method and an apparatus for industrial and professional electrostatic painting, in accordance with ionization parameters predetermined according to the type of material to be painted and implemented using an electrostatically charged pressurized carrier fluid (whether positively charged, negatively charged, or in the neutral plasma state) combined to a flow of atomized liquid paint or powder paint, including a step of oxygen-enrichment of the paint-carrier fluid in order to obtain a higher degree of electrostatic grip of the carrier fluid.
Abstract:
A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.
Abstract:
A system, including an electrostatic spray system, including an electrostatic tool configured to spray a material with an electrostatic charge, and a target with a surface finish greater than or equal to a number 4 mirror finish configured to receive a material sprayed by the electrostatic tool.
Abstract:
Methods include applying an electric charge to a coating material that includes carbon nanotubes and a carrier, such as paint, and depositing the electrically charged coating material to a substrate. In some methods, the applying includes utilizing an electrostatic sprayer. In some methods, the substrate is isolated from ground during the depositing. In some methods, the substrate is an insulator. Some methods result in regions of carbon nanotubes that are substantially longitudinally aligned after the depositing. Coated substrates may include a coating with carbon nanotubes that are substantially longitudinally aligned. Aircraft, spacecraft, land vehicles, marine vehicles, wind turbines, and apparatuses that may be susceptible to lightning strikes or other types of electromagnetic effects and that include a coated substrate also are disclosed.
Abstract:
Disclosed herein, in certain embodiments, is a method of depositing a polymer onto a surface. In some embodiments, the method comprises using a high electric field and a high frequency vibratory motion to deposit a polymer solution onto the surface.Disclosed herein, in certain embodiments, is a method of manufacturing an electrode or diode. In some embodiments, the method comprises using a high electric field and a high frequency vibratory motion to deposit a polymer onto a surface.Further disclosed herein, in certain instances, is an electrode manufactured by any method disclosed herein. Further disclosed herein, in certain instances, is a diode manufactured by any method disclosed herein.
Abstract:
The present invention relates to a method for providing a metallic coat covering a surface, said method comprises: (i) applying an electrically conductive two component binder on said surface; (ii) electrostatic spraying a metal powder on the binder applied in step (i); wherein the metal powder comprises metal particles with an average diameter less than 80 micron.