Abstract:
It is an object of the present invention to provide a copper-containing silica glass which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength of 400 nm or less, and which is excellent in long term stability even in the high output use. The copper-containing silica glass is made to have copper of from 5 wtppm to 200 wtppm, which emits fluorescence having a peak in a wavelength range of from 520 nm to 580 nm under irradiation of ultraviolet light with a wavelength ranging from 160 nm to 400 nm, and in which an internal transmittance per 2.5 mm thickness at a wavelength of 530 nm is 95% or more.
Abstract:
A method of molding a synthetic silica glass molded body by accommodating a synthetic silica glass block in a mold provided with a pressing portion, and by pressing the block while heating, the method including: washing the synthetic silica glass block so that a concentration of copper which is present on the surface of the synthetic silica glass block is 2 ng/cm2 or less; heating high purity carbon powders with a content of copper and aluminium; heating the mold at a temperature condition of 1700° C. to 1900° C.; applying the powders before accommodating the block in the mold; and molding the block in a predetermined form by pressing the block while heating within a hold temperature range of 1500° C. to 1700° C., after accommodating the washed block in the mold.
Abstract translation:一种合成石英玻璃成型体的成型体,其通过将合成石英玻璃块容纳在具有按压部的模具中,并且在加热的同时加压块而成型,其特征在于,包括:洗涤合成石英玻璃块,使铜 存在于合成石英玻璃块的表面上的浓度为2ng / cm 2以下; 加热含有铜和铝的高纯度碳粉; 在1700℃至1900℃的温度条件下加热模具。 在将块容纳在模具中之前施加粉末; 并且在将洗涤的块体容纳在模具中之后,在1500℃至1700℃的保持温度范围内加热的同时通过压制块将模块成型为预定形式。
Abstract:
A method of molding a synthetic silica glass molded body by accommodating a synthetic silica glass block in a mold provided with a pressing portion, and by pressing the block while heating, the method including: washing the synthetic silica glass block so that a concentration of copper which is present on the surface of the synthetic silica glass block is 2 ng/cm2 or less; heating high purity carbon powders with a content of copper and aluminium; heating the mold at a temperature condition of 1700° C. to 1900° C.; applying the powders before accommodating the block in the mold; and molding the block in a predetermined form by pressing the block while heating within a hold temperature range of 1500° C. to 1700° C., after accommodating the washed block in the mold.
Abstract translation:一种合成石英玻璃成型体的成型体,其通过将合成石英玻璃块容纳在具有按压部的模具中,并且在加热的同时加压块而成型,其特征在于,包括:洗涤合成石英玻璃块,使铜 存在于合成石英玻璃块的表面上的浓度为2ng / cm 2以下; 加热含有铜和铝的高纯度碳粉; 在1700℃至1900℃的温度条件下加热模具。 在将块容纳在模具中之前施加粉末; 并且在将洗涤的块体容纳在模具中之后,在1500℃至1700℃的保持温度范围内加热的同时通过压制块将模块成型为预定形式。
Abstract:
To provide a technique with which a quartz glass jig and a doped quartz glass jig are regenerated by completely removing the impurities which are attached to the surface and the impurities which have diffused into the interior from quartz glass jigs which have been used in semiconductor production processes and then carrying out working repair and removing the contamination from the working processes as well. After use, the impurities are removed from the aforementioned quartz glass jigs in the said purification treatment process which includes a purification treatment process in which the quartz glass jigs are subjected to a purification treatment in a gaseous atmosphere which includes a halogen element at a temperature within the region above a prescribed temperature.
Abstract:
An F-doped silica glass, a process for making the glass, an optical member comprising the glass, and an optical system comprising such optical member. The glass material comprises 0.1-5000 ppm by weight of fluorine. The glass material according to certain embodiments of the present invention has low polarization-induced birefringence, low LIWFD and low induced absorption at 193 nm.
Abstract:
The invention relates to a x-ray opaque glass which belongs to a SiO2 and Yb2O3 system and can contain, when necessary, additives for adapting the properties thereof. A method for producing said glass and for using it, in particular in the form of a dental glass are also disclosed.
Abstract translation:本发明涉及属于SiO 2和Y 2 O 3 O 3系统的x射线不透明玻璃,并且当需要时, 用于调整其性能的添加剂。 还公开了一种用于生产所述玻璃并用于其的方法,特别是牙科玻璃的形式。
Abstract:
A method of preparing a sol-gel material is described. A metal alkoxide and an organically modified Si-alkoxide having a predetermined functional group are dissolved in a first solvent and a second solvent to form a first solution and a second solution, respectively. The first solution and the second solution are then mixed and heated. As a result, the metal alkoxide reacts with the organically modified Si-alkoxide, and a functionalized sol-gel material is formed thereby. Furthermore, the solid content of the functionalized sol-gel material is increased by transferring the same into another solvent. Therefore, a thick sol-gel film is fabricated by means of the transferred functionalized sol-gel material.
Abstract:
A device amplifies light at wavelengths in the vicinity of 1420-1530 nm, using thulium doped silica-based optical fiber. This wavelength band is of interest as it falls in the low-loss optical fiber telecommunications window, and is somewhat shorter in wavelength than the currently standard erbium doped silica fiber amplifier. The device thus extends the band of wavelengths which can be supported for long-distance telecommunications. The additional wavelength band allows the data transmission rate to be substantially increased via wavelength division multiplexing (WDM), with minimal modification to the standard equipment currently used for WDM systems. The host glass is directly compatible with standard silica-based telecommunications fiber. The invention also enables modified silicate based amplifiers and lasers on a variety of alternative transitions. Specifically, an S-band thulium doped fiber amplifier (TDFA) using a true silicate fiber host is described.
Abstract:
A device amplifies light at wavelengths in the vicinity of 1420-1530 nm, using thulium doped silica-based optical fiber. This wavelength band is of interest as it falls in the low-loss optical fiber telecommunications window, and is somewhat shorter in wavelength than the currently standard erbium doped silica fiber amplifier. The device thus extends the band of wavelengths which can be supported for long-distance telecommunications. The additional wavelength band allows the data transmission rate to be substantially increased via wavelength division multiplexing (WDM), with minimal modification to the standard equipment currently used for WDM systems. The host glass is directly compatible with standard silica-based telecommunications fiber. The invention also enables modified silicate based amplifiers and lasers on a variety of alternative transitions. Specifically, an S-band thulium doped fiber amplifier (TDFA) using a true silicate fiber host is described.
Abstract:
The invention relates to a glass excellent in infrared absorption capability and corrosion resistance, and its fabrication process. A compound of divalent copper and a compound of a metal species for a network modifier oxide are introduced in a wet gel. Then, the wet gel is dipped in a dipping solution having a low solubility with respect to the compound of divalent copper and the compound of a metal species for a network modifier oxide for the precipitation in the wet gel of the divalent copper compound and the compound of a metal species for a network modifier oxide, followed by drying and firing. Thus, an infrared absorbing glass comprising 70 to 98 mol % of SiO2, 1 to 12 mol % of CuO and 1 to 18 mol % of a network modifier oxide other than CuO is fabricated.