Abstract:
An apparatus (10) measures a spectral distribution of a printed product (12) produced with a printing device. The apparatus (10) has an illuminating source (20) for illuminating the printed product (12), an optoelectronic measuring means (32) for measurer the reflectance value of a section of the spectrum of the light (26) reflected from the printed product (12), an optical disperser (28) for dispersing the wavelengths of the reflected light (26), and a light entry gap plane that is definitive for the disperser (28). The light entry gap plane that is definitive for the disperser (28) is created by the surface of the printed product (12) to be examined.
Abstract:
A device for making spectroscopy measurements with reduced or eliminated surface reflections is provided, the device including an elongated member including an outermost opaque thin walled enclosure; an optically transparent thin-walled enclosure adjacent an inner surface of said outermost thin walled enclosure; one or more optical fibers centrally and axially disposed and spaced apart a distance B with respect to the optically transparent thin-walled enclosure; wherein the elongated member is adapted to be coupled to a spectrometer and an illumination source to provide a light signal from the illumination source along said optically transparent thin-walled enclosure and collect a scattered light signal from the sample by said one or more optical fibers to provide to the spectrometer.
Abstract:
We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
Abstract:
Certain examples described herein are directed to optical devices and systems that include first and second optical elements. In some examples, the first optical element may be configured to pass light received from an excitation source, and the second optical element may be optically coupled to the first optical element and may be configured to reflect incident light from the first optical element back to the first optical element and configured to pass the light reflected from the first optical element. Methods using the devices and systems are also described.
Abstract:
An imaging optical system includes a set of mirrors including at least three mirrors on a beam path. Only a last mirror on the beam path has a positive optical power and all other mirrors have negative optical power. The sum of the optical powers of the mirrors is zero. An external posterior aperture stop is on the beam path between the last mirror and the image plane. A back focal length of the optical system is equal to or greater than an effective focal length of the optical system. The field of view is large, and typically at least 30-40 degrees in one plane.
Abstract:
An apparatus (10) measures a spectral distribution of a translucent printed product (12) produced with a printing device. The apparatus (10) has an illuminating source (20) for illuminating the printed product (12), an optoelectronic measuring means (32) for measurer the transmittance value of a section of the spectrum of the light (26) transmitted through the printed product (12), an optical disperser (28) for dispersing the wavelengths of the transmitted light (26), and a light entry gap plane that is definitive for the disperser (28). The light entry gap plane that is definitive for the disperser (28) is created by the surface of the printed product (12) to be examined.
Abstract:
We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
Abstract:
The color measurement instrument includes an illumination system and a sensing system. The illumination system is composed of a light emitting element and a light pipe. The light pipe has an incident surface at an illuminating end of the light emitting element and an ejected surface adjacent to a sensing platform of a sensing system. The sensing system includes a light collection device and a sensing platform for disposing a testing object. The light collection device includes an aperture stop for adjusting the shape of a light spot on a color sensor to avoid glare, a light collection lens set for detecting and projecting an image of a testing object on the sensing platform onto a field stop, a field stop for separating a light from an area other than the effective sensing area of the sensing platform, an uniform lens set for spreading the image on the field stop over the whole color sensor, and a color sensor for capturing and analyzing the color to adjust the brightness and chroma and output an analysis signal.
Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
Abstract:
In detection and sensing, light is transmitted through layers or structures that vary laterally, such as with a constant gradient or a step-like gradient. After transmission, a position of a transmitted portion of the light or of output photons can be used to determine wavelength change or to obtain other photon energy information. The light can be received, for example, from a stimulus-wavelength converter such as an optical fiber sensor or another optical sensor. A component that propagates the light from the converter to a transmission structure can spread the light across the transmission structure's entry surface. At the exit surface of the transmission structure, photosensor components can sense or detect transmitted light or output photons, such as with a photosensor array or a position sensor. A photosensed quantity can be compared, such as with another photosensed quantity or with a calibration quantity. A differential quantity can be obtained using photosensed quantities.