Abstract:
A system and method includes a detecting at least one color on a substrate using a mobile communication device, identifying the detected color and outputting a result of the identification with the mobile communication device.
Abstract:
Multiport multispectral portable imaging systems having at least two cameras with charge-coupled device sensors, a front lens unit, at least two rear lens units, a beamsplitter, and at least two bandpass filters is used to detect contaminants on food.
Abstract:
An optics assembly for a color measurement system. The optics assembly includes at least one light tube array and a polarization effect minimization element. The optics assembly includes a diffuser, a photocell separator, a precision filter and a second light tube array is provided substantially contained in a housing. The color measurement system includes a multi-purpose filter and the optics assembly. Segmented light is mixed and the polarization qualities of the light are modified so to minimize the effects caused by angular adjustments. A diffuser mixes the segmented light. Additionally, the color measurement system includes an ambient light attachment for collecting light from the viewing area surrounding the computer display. The ambient light collected is then analyzed, and a viewing area profile is created. The viewing area profile then can be used by software to adjust the colors displayed on the computer displays.
Abstract:
In accordance with the description, electronic color matching apparatus with a display of multiple independently controllable segments enable a user to visually compare, capture, catalog and disseminate color as tangible information. In one embodiment, the invention provides an accurate color display representation of a color by means of a novel color screen that is also capable of hundreds of shade adjustments of the overall RGB color component levels until an exact color Hue is displayed. Such a novel color screen of this invention may be designated as an RGBH screen or display device. (Red, Green, Blue, Hue).
Abstract:
A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
Abstract:
A compact Raman and fluorescence spectroscopy system that uses a microprism or micromirror based optical structure to accomplish the introduction of excitation radiation with compactness and simplified system configuration for portable or mobile spectroscopy applications. A microprism may be glued to a surface location of a focusing lens in the system to directly receive the illumination signal without intervening optical components. Alternatively, the microprism may be simply placed in close physical proximity of the focusing lens without being glued thereto. On the other hand, a micromirror may be used instead of the microprism. The illuminating photons received by the microprism or micromirror may be directly transferred to the sample under investigation via the focusing lens. The compact system may be made portable and may further include an on-board spectrometer with or without a display unit. For chemical detecting applications, a detector (e.g., a CCD array) may also be provided along with the spectrometer.
Abstract:
A Raman probe assembly comprises: a light source for generating laser excitation light; a camera for capturing an image; a light analyzer for analyzing a Raman signature; and a light path for (i) delivering the laser excitation light from the light source to the specimen so as to produce the Raman signature for the specimen, (ii) capturing an image of the specimen and directing that image to the camera, and (iii) directing the Raman signature of the specimen to the light analyzer. A method includes providing a Raman probe assembly carried by a remote controlled robot; navigating the remote control robot to a position adjacent to a specimen; opening a shutter/wiper disposed adjacent to a window of the Raman analyzer; using a camera to aim the probe body at the specimen; energizing a light source; and analyzing the return light passed to the light analyzer.
Abstract:
A device comprising an illumination means and a light sensing means, that can examine and memorize a discrete color of an object based on the magnitude of the reflected light bouncing off of the colored surface in at least three areas of the electromagnetic spectrum. The device also provides output as a visually and/or audibly perceptible signal for deciphering the color. The color range identified by the device is not limited to the visible spectrum and may include infra-red and ultra-violet light. A storage means for memorizing colors may also be included in the device. Applications of ColorStick technology may include children's toys, aids for the visually handicapped (e.g. blind or color blind individuals), designers, internet shoppers, gardeners, etc.
Abstract:
An apparatus for displaying chemical projects a chemical image of an object back onto that object. At region (23) light travels from the object to the apparatus (20) and back from the apparatus as it projects onto the object. Light (24) from the object (22) (which is illuminated by natural light) passes through an objective lens (31) of the apparatus. In its path is rotating mirror (25) and when the mirror is parallel to the path of the rays of light (24), the light is allowed to pass on to hyperspectral camera (26) which is of the AOTF type. The output from the camera is transmitted to processor (27) where the chemical image is generated from the hyperspectral data. The camera generates a series of monochromatic images that are passed to the processor and the chemical image is built up as the camera scans through the appropriate wavelengths. The image data is then transmitted to a projector (28) whose output image is focussed by lens (30) towards the rotating mirror (25). When the mirror is in the position illustrated, the image is reflected off the mirror and back through lens (31) to the imaged object (22).