Abstract:
An interferometric spectrum analyzer employs a pair of Bragg cells arranged in an optically cascaded configuration such that both the signal beam and the reference beam travel along a common optical path. The beam-modifying properties of the Bragg cells are such that within a prescribed bandwidth of operation, the deflection properties of the respective cells are frequency complementary, namely different frequencies applied to the respective cells deflect the beam passing therethrough along the same optical path, to produce a beat frequency at the Fourier transform plane. In accordance with a first embodiment, complementary deflection action is achieved by using Bragg cells having respectively different acoustic velocites. In a second embodiment, each Bragg cell has the same acoustic velocity. The deflection/frequency complementary effect is obtained by the use of a birefringent material prism interposed between the Bragg cells, which produces angular deviation that depends upon the polarization and the direction of propagation of light passing through the prism.
Abstract:
The correlational gas analyzer comprises a light source passed through the gas under study, which features a quasiperiodic pattern of the specified spectral band, and an optical system with sequentially positioned along the optical path condensor, input slit iris, dispersing means to decomposed the specified spectral band of the gas under study, and rotatably mounted output slit iris configures as a disc with a plurality of slits, uniformly distributed along its circumference and equidistant from the disc center. The spacing between the centers of adjacent slits is approximately equal to the scan length of the specified spectral band of the gas under study. The output slit iris scans the specified spectral band of the gas under study across a photoreceiver, the output signal whereof drives two electric signal amplifiers. One of the amplifiers is designed as a tuned amplifier, with the resonant frequency thereof defined by a preset relation between the disc rotation speed, the number of maxima or minima in the specified spectral band, and the number of slits in the disc.
Abstract:
A correlational gas analyzer, comprising a light source with the light beam passed through the gas under study with a quasiperiodic pattern of the spectral band, and an optical system with sequentially positioned along the light beam condensor, input slit iris, beam dispering element and rotatably mounted output slit iris configured as a disc with a slit shaped as an Archimedes spiral. The Archimedes spiral center is coincident with the disc center and its pitch is approximately equal to the scan length of the specified spectral band of the gas under study. The output slit iris scans the specified spectral band of the gas under study across a photoreceiver, the outputs whereof drive the inputs of a first and second electric signal amplifier, with the outputs thereof connected to connected in series corrector unit and recorder. The first amplifier is a tuned amplifier with resonant frequency defined by the speed of disc rotation and by the number of maxima or minima in the specified spectral band of the gas under study.
Abstract:
The present invention provides an optical instrument for measuring concentrations of polluting gases on long and short geometric paths. The apparatus comprises a telescope for focussing a ray of light into a spectrometer, a comparison cell containing a known concentration of a polluting gas, control means and an electronic apparatus adapted to determine the concentration of the polluting gas in the analytical sample.
Abstract:
For detecting specific gases in an automobile exhaust selected lines of the exhaust gas absorption spectrum and reference bands of the spectrum close to the lines are chopped by a mask at the spectral plane so that the light flux from the lines and bands are transmitted at different times. The flux of the lines and bands are also encoded by the chopping mask or a successive encoding mask and applied to a single photodetector which produces a series of electrical values representing the flux of the selected spectral lines.
Abstract:
Frequency registration deviations occurring during a scan of a frequency or wavelength range by a spectroscopic analysis system can be corrected using passive and/or active approaches. A passive approach can include determining and applying mathematical conversions to a recorded field spectrum. An active approach can include modifying one or more operating parameters of the spectroscopic analysis system to reduce frequency registration deviation.
Abstract:
DCS analyzer including a memory to store autocorrelation values, model parameters, fitting parameters, and simulated correlation values from a DCS model; a mean square error (MSE) module to compute MSE between theoretical autocorrelation values computed from the model parameters and measured autocorrelation values; a sorting module to sort three latest MSE values obtained from the MSE module and generate indexes of largest, medium, and smallest MSE values; a convergence checking module to determine whether convergence is reached in solving an autocorrelation equation; a search module to calculate αDB and β values at reflection, extension, contraction, and shrink locations; a comparison module to compare two latest MSE values and find new αDB and β values to replace values associated with a largest MSE; a state controller coupled with the memory and the modules to control an operation thereof; and an output buffer to present a fitted solution of the autocorrelation equation.
Abstract:
A remote sampling sensor for determining characteristics of a sample includes measurement optics and an insertion probe. The measurement optics are configured to emit light and detect returned light. The insertion probe includes a chamber, the chamber being configured to permit the sample to enter the chamber, an insertion tip at a distal end of the insertion probe, and a retro-reflective optic adjacent the insertion tip. The retro-reflective optic is configured to return the light from the measurement optics through the chamber to the measurement optics. The insertion probe is configured to be remotely located from the measurement optics.
Abstract:
Optical imaging or spectroscopy described can use laminar optical tomography (LOT), diffuse correlation spectroscopy (DCS), or the like. An incident beam is scanned across a target. An orthogonal or oblique optical response can be obtained, such as concurrently at different distances from the incident beam. The optical response from multiple incident wavelengths can be concurrently obtained by dispersing the response wavelengths in a direction orthogonal to the response distances from the incident beam. Temporal correlation can be measured, from which flow and other parameters can be computed. An optical conduit can enable endoscopic or laparoscopic imaging or spectroscopy of internal target locations. An articulating arm can communicate the light for performing the LOT, DCS, or the like. The imaging can find use for skin cancer diagnosis, such as distinguishing lentigo maligna (LM) from lentigo maligna melanoma (LMM).
Abstract:
An imaging method includes imaging a scene having a pulsed light source and associating a symbol with the light source. The image is enhanced by inserting a symbol into the image indicative of location of the pulsed light source in the scene. The symbol overlays the image in spatial registration with the location of the pulsed light source in the scene to augment indication of the location provided by the pulsed light source. Imaging systems are also described.