Abstract:
Described herein is a process for correcting an observed color difference between a color at a first gloss and the color at a second gloss different than the first gloss, said process comprising the steps of: (a) determining a first correction caused by a lightness (Y-value) of the color a first gloss; (b) determining a second correction caused by an inclusion of a first surface diffusion in gloss readings; (c) based on the first and second corrections, determining a specular correction caused by a difference in specular reflections from the color at the first gloss and the color at the second gloss; (d) determining tristimulus corrections based on the specular correction; (e) preparing corrected tristimulus values of the color at a second gloss; and (f) producing a paint composition for the color at the second gloss using the corrected tristimulus values.
Abstract:
An illumination device and method are provided herein for calibrating individual LEDs in the illumination device to obtain a desired luminous flux and a desired chromaticity of the device over changes in drive current, temperature, and over time as the LEDs age. The calibration method may include subjecting the illumination device to a first ambient temperature, successively applying at least three different drive currents to a first LED to produce illumination at three or more different levels of brightness, obtaining a plurality of optical measurements from the illumination produced by the first LED at each of the at least three different drive currents, obtaining a plurality of electrical measurements from the photodetector and storing results of the obtaining steps within the illumination device to calibrate the first LED at the first ambient temperature. The plurality of optical measurements may generally include luminous flux and chromaticity, the plurality of electrical measurements may generally include induced photocurrents and forward voltages, and the calibration method steps may be repeated for each LED included within the illumination device and upon subjecting the illumination device to a second ambient temperature.
Abstract:
In an embodiment, an optoelectronic measuring device includes a first detector configured to provide a first detector signal, a second detector configured to provide a second detector signal, wherein each of the first detector and the second detector is configured to detect electromagnetic radiation, a signal difference determiner configured to generate a difference signal by subtracting the second detector signal from the first detector signal and a spectral filter arranged in a beam path upstream of the second detector, wherein the spectral filter is configured to filter the electromagnetic radiation before detection by the second detector, wherein the optoelectronic measuring device is configured to measure an intensity of the electromagnetic radiation impinging on the optoelectronic measuring device.
Abstract:
An illumination device and method are provided herein for calibrating individual LEDs in the illumination device to obtain a desired luminous flux and a desired chromaticity of the device over changes in drive current, temperature, and over time as the LEDs age. The calibration method may include subjecting the illumination device to a first ambient temperature, successively applying at least three different drive currents to a first LED to produce illumination at three or more different levels of brightness, obtaining a plurality of optical measurements from the illumination produced by the first LED at each of the at least three different drive currents, obtaining a plurality of electrical measurements from the photodetector and storing results of the obtaining steps within the illumination device to calibrate the first LED at the first ambient temperature. The plurality of optical measurements may generally include luminous flux and chromaticity, the plurality of electrical measurements may generally include induced photocurrents and forward voltages, and the calibration method steps may be repeated for each LED included within the illumination device and upon subjecting the illumination device to a second ambient temperature.
Abstract:
An object is to ensure clear and easy quantification of the textures such as metallic texture and shiny texture of pearl pigment and to rationalize comparison inspection between an inspection object and a reference object. A coloring inspection apparatus 1 includes a camera 2 that is configured to have three spectral sensitivities (S1(λ), S2(λ), S3(λ)) linearly and equivalently converted to a CIE XYZ color matching function, an arithmetic processing unit 3 that is configured to obtain and compute coloring data by conversion of an image which has three spectral sensitivities and is obtained by the camera 2 into tristimulus values X, Y and Z in a CIE XYZ color system, and lighting units 6 that are configured to illuminate an automobile 5 as an example of measuring object. The coloring inspection apparatus 1 computes a color distribution consistency index that represents a ratio of overlap of two xyz chromaticity histogram distributions of an inspection object Q and a reference object R, so as to inspect color.
Abstract:
In one example, an electronic signal is received from a target color measurement instrument that includes a plurality of color channels. A response of the target color measurement instrument to a light emitted by a target light emitting device is extracted from the signal. The response is calibrated to minimize a difference between the response and an output of a color matching function of a standard observer. Calibrating includes multiplying the response by a calibration matrix. The calibration matrix combines measurements of a first plurality of lights from a tunable light source and measurements of a second plurality of lights from the target light emitting device. A first subset of the measurements of the first plurality and second plurality of lights are made by the target color measurement instrument and a second subset of the measurements of the first plurality and second plurality of lights are made by a reference spectroradiometer.
Abstract:
In a color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the samples to a spectrograph. A rendering device may also be a display having a member supporting a color measuring instrument for receiving light from an area of the screen. The color measuring instruments provide for non-contact measurements of color samples rendered on a display or a sheet, and are self-calibrating by the use of calibration references.
Abstract:
The present invitation relates to an optical radiation measurement method based on light filter units, comprising the steps of: 1) providing characteristic filter units and correction light filter units in front of detection units to obtain multiple measured response values of an object to be detected; and, 2) selecting one or more sampling regions within a waveband to be detected, and calculating, according to a corresponding simultaneous expression/equation system of the measured response values, a spectral power distribution within the waveband to be detected. In this method, by introducing a small number of correction light filter units, the spectral power distribution within the entire waveband to be detected can be obtained without using a large number of narrow waveband color filters. In addition, a light radiation measurement apparatus is disclosed.
Abstract:
An electronic device may be provided with a display mounted in a housing. A color sensing ambient light sensor may measure the color of ambient light. The color sensing ambient light sensor may be mounted in alignment with an ambient light sensor window formed in an inactive area of the display. The color sensing ambient light sensor may be formed from detectors on a semiconductor substrate. The detectors may include detectors that have spectral sensitivity profiles matching those of color matching functions. The color sensing ambient light sensor may include an infrared light detector. Light redirecting structures such as a diffuser, prism film, negative lens film, or privacy film may be used in directing light into the ambient light sensor. The color sensing ambient light sensor may be calibrated by exposing the sensor to light sources of different types.
Abstract:
In a color imaging system, multiple rendering devices are provided at different nodes along a network. Each rendering device has a color measurement instrument for calibrating the color presented by the rendering device. A rendering device may be a printer in which the measuring of color samples on a sheet rendered by the printer is provided by a sensor coupled to a transport mechanism which moves the sensor and sheet relative to each other, where the sensor provides light from the sample to a spectrograph. A rendering device may also be a display having a member supporting a color measuring instrument for receiving light from an area of the screen. The color measuring instruments provide for non-contact measurements of color samples rendered on a display or a sheet, and are self-calibrating by the use of calibration references.