Abstract:
A semiconductor radiation detection crystal converts incident radiation or an incident particle into an electrical signal. A first substrate for conveying the electrical signal to processing electronics is bonded to the crystal via an anisotropic conductive material sandwiched therebetween. The crystal can include can array of pixels which are positioned in opposition with an array of conductive pads formed on the first substrate. The anisotropic conductive material forms between each pixel and its corresponding conductive pad an electrical path, with each electrical path isolated from other electrical paths.
Abstract:
An amalgamation of selected energy pathways and other elements formed at least in-part by sequential manufacturing operations and made operable to be coupled and/or formed as part of a predetermined assembly and/or assemblies and/or assembly variations practicable and/or operable for sustaining electrically opposing and/or complementary energy portion confluences that can be themselves made operable by the arrangement amalgam to undergo portions of energy conditioning as a portion of an energized circuit.
Abstract:
Composite materials comprising at least 60 volume %, preferably 70 volume %, of particles of finely powdered filler material in a matrix of poly(arylene ether) polymer material are made by forming a mixture of the components, forming the required bodies therefrom, and then heating and pressing the bodies to a temperature sufficient to melt the polymer and to a pressure sufficient to disperse the melted polymer into the interstices between the filler particles. Surprisingly these polymer materials can only be effective as bonding materials when the solids content is as high as that specified, since with lower contents the resultant bodies are too friable. This is completely contrary to accepted prior art practice which considers that composites are progressivly weakened as the solids content is increased, so that such content must be limited. In processes to obtain as complete a dispersion of the components as possible they are individually dispersed in a liquid dispersion medium containing the polymer together with necessary additives, each mixture being ground if required to obtain a desired particle size, the mixtures are mixed, again ground to produce thorough dispersion, are separated from the liquid dispersion medium and green articles formed from the resulting pasty mixture. The green articles are then heated and pressed as described above. Mixtures of different filler materials may be used to tailor the electrical and physical properties of the final materials. The articles preferably comprise substrates for use in electronic circuits.
Abstract:
Composite materials comprising at least 60 volume %, preferably 70 volume %, of particles of finely powdered filler material in a matrix of poly(arylene ether) polymer material are made by forming a mixture of the components, forming the required bodies therefrom, and then heating and pressing the bodies to a temperature sufficient to melt the polymer and to a pressure sufficient to disperse the melted polymer into the interstices between the filler particles. Surprisingly these polymer materials can only be effective as bonding materials when the solids content is as high as that specified, since with lower contents the resultant bodies are too friable. This is completely contrary to accepted prior art practice which considers that composites are progressivly weakened as the solids content is increased, so that such content must be limited. In processes to obtain as complete a dispersion of the components as possible they are individually dispersed in a liquid dispersion medium containing the polymer together with necessary additives, each mixture being ground if required to obtain a desired particle size, the mixtures are mixed, again ground to produce thorough dispersion, are separated from the liquid dispersion medium and green articles formed from the resulting pasty mixture. The green articles are then heated and pressed as described above. Mixtures of different filler materials may be used to tailor the electrical and physical properties of the final materials. The articles preferably comprise substrates for use in electronic circuits.
Abstract:
A method and system for forming contacts on semiconductor components, such as wafers, dice and packages, are provided. The method employs magnets to align and hold ferromagnetic balls on bonding sites of a component substrate. The system includes a holder for holding the component substrate, and magnets on the holder aligned with bonding sites on the component. The system also includes a ball placement mechanism for placing the ferromagnetic balls on the bonding sites, and a bonding mechanism, such as an oven, or a focused energy source, for bonding the ferromagnetic balls to the bonding sites. The ferromagnetic balls can be provided as a ferromagnetic core having an outer solder layer, as a solid ferromagnetic material with a conductive adhesive outer layer, or as ferromagnetic particles embedded in a bondable matrix material. An alternate embodiment system includes a focused magnetic source for dynamically aligning the ferromagnetic balls to the bonding sites.
Abstract:
In accordance with the invention, an electronic device having one or more contact pads is placed in contact with a carrier sheet bearing an array of transferable solder particles. Heat is applied to adhere the solder to the contact pads, and solder is selectively transferred onto the contact pads. In a preferred embodiment the solder-carrying medium comprises elastomeric material and the solder particles comprise solder-coated magnetic particles. Application of a magnetic field while the elastomer is curing produces a regular array of solder coated particles. Using this method, devices having smaller than conventional contact structures can be readily interconnected.
Abstract:
The invention provides a composition comprising: (i) a ferrofluid comprising a colloidal suspension of ferromagnetic particles in a non-magnetic carrier liquid, and (ii) a plurality of electrically-conductive particles having substantially uniform sizes and shapes, dispersed in the ferrofluid. Various types of substantially non-magnetic electrically-conductive particles are described. Application of a substantially uniform magnetic field by magnet means to the composition causes the electrically-conductive particles to form a regular pattern. The composition is used for providing anisotropic conductive pathways between two sets of conductors in the electronics industry. The composition may be a curable adhesive composition which bonds the conductors. Alternatively or in addition the electrically-conductive particles may have a latent adhesive property e.g. the particles may be solder particles. The ferrofluid may be a colloidal suspension of ferromagnetic particles in a liquid monomer.
Abstract:
An SCSI cable assembly (30) with a termination circuit included within one of the connector housings (44) is disclosed. The termination circuit is on a circuit board (52) that is retained within a cavity (68) between two solder nest halves (50). The solder nest halves (50) have a plurality of openings (70) that are in alignment with contact pads (54) on a surface of the circuit board (52). Solder segments (100) are arranged within the openings (70), and conductors (48) of a cable (32) are individually inserted into the openings in thermal engagement with the solder segments to form a solder nest assembly (40). An electrical connector having a plurality of contact leads (58) spaced similarly to the spacing of the openings (70) is assembled to the solder nest assembly so that each lead (58) is in thermal engagement with a respective conductor (48) in a respective opening (70). Each lead (58) is attached to a common carrier strip (104) which is a self regulating temperature heater. The heater is activated by application of an RF current to reflow the solder segment (100) thereby electrically connecting the leads (58) to their respective conductors (48) and contact pads (54).
Abstract:
Electronic devices having at least two components with mating contact pads are provided with high-aspect-ratio solder joints between the mating pads. These joints ar formed by placing a composite solder medium containing solder wires in an electrically insulating matrix such that at least two solder wires are in contact with the mating pads, and fusing the wires to the pads. The insulating matrix with remainder of solder wires is then optionally removed from between the said at least two components. The composite solder medium is formed by preparing an elongated body of solder wires in an insulating matrix and cutting off slices of the composite solder medium, the solder wires having a high-aspect-ratio of length to their diameter. Alternatively sheets of the composite solder medium are prepared by magnetically aligning solder coated magnetic particles into columns arranged transverse of an insulating matrix and heating sufficiently to fuse the solder in each column into a continuously conducting solder path.
Abstract:
In accordance with the invention, an electronic device having one or more contact pads is adhered to an array of transferable solder particles on a removable carrier sheet. The carrier is removed, as by dissolving, leaving solder selectively adhered to the contact pads. In a preferred embodiment the solder-carrying medium is water soluble, and the solder particles comprise solder-coated magnetic particles. Application of a magnetic material while the medium is drying or curing, produces a regular array of solder-coated particles. Using this method, devices having smaller than conventional contact structures can be readily interconnected.