Abstract:
A high speed flexible interconnect cable for an electronic assembly includes a number of conductive layers and a number of dielectric layers. Conductive signal traces, located on the conductive layers, combine with the dielectric layers to form one or more high speed electrical transmission line structures. The cable can be coupled to electronic components using a variety of connection techniques. The cable can also be terminated with any number of known or standardized connector packages.
Abstract:
The invention provides a transmission noise suppressing structure and a wiring board capable of suppressing a transmission noise transferred through a power supply line, stabilizing a power supply voltage, and reducing signal transmission line cross talk transmitted through the power supply line or a ground layer without being affected by a resistive layer. A transmission noise suppressing structure includes a power supply line and a signal transmission line arranged apart from each other on the same surface; a ground layer arranged apart from the power supply line and the signal transmission line; and a resistive layer arranged apart from the power supply line and the ground layer. The resistive layer has an area (I) which faces the power supply line and an area (II) which does not face the power supply line. The resistive layer and the signal transmission line are apart from each other.
Abstract:
The present invention is a specially designed PCB that allows XFP compliant transceiver modules and EMI gaskets to be used in a manner specified in the XFP standard and results in an integrated solution that is compliant with the XFP standard. Various geometric features are incorporated into the PCB to achieve improvements that in combination result in an integrated solution meeting the XFP standard. Some of these improved features include: specific thickness of prepreg and other layering of the PCB, specific spacing, dimensions and weights for certain components of the PCB, an opening on the first layer XFP cage ground shield connecting to the EMI gasket, guard ground traces in the second layer surrounding the differential pair signal traces, openings in the copper of the third layer beneath the XFP cage ground shield and XFP connector pads, and ground vias at the XFP connector and PHY connector pads.
Abstract:
A semiconductor package substrate is provided, which includes a substrate body having a plurality of conductive through holes formed therein, wherein at least two adjacent conductive through holes are formed as a differential pair, each of which has a ball pad formed at an end thereof; and at least one electrically integrated layer formed in the substrate body, and having an opening corresponding to the two adjacent conductive through holes formed as the differential pair and the ball pads thereof. Thus, the spacing between the conductive through holes and the electrically integrated layer and the spacing between the ball pads can be enlarged by the opening, so as to balance the impedance match.
Abstract:
A connector is provided for simultaneously improving both the NEXT high frequency performance when low crosstalk plugs are used and the NEXT low frequency performance when high crosstalk plugs are used. The connector includes a first compensation structure provided on an inner metalized layer of the PCB at a first stage area of the PCB, and a second compensation structure, provided at a second stage area of the PCB, for increasing compensation capacitance with increasing frequency.
Abstract:
A method for reducing crosstalk between a plurality of wires in a network cable using a network cable jack that includes a printed circuit board (PCB) for balancing both inductive and capacitive coupling. The method includes using two distinct inductance zones separated by a neutral zone. Significant gains in degrees of freedom are achieved for designing PCB trace patterns in which a pair of inductive coupling zones jointly offset the inductive coupling caused by a specification plug and the jack contacts, both in magnitude and phase angle. Further, using distinct inductance zones offers more freedom regarding the placement of capacitive plates for use in capacitance balancing as well as the placement of terminals and insulation displacement contacts. Although the magnitude of a capacitive coupling is determined by the length of the capacitor plates parallel to current carrying traces, the approach allows capacitive and inductive coupling to be balanced independently.
Abstract:
An article of manufacture includes a circuit board and a pair of traces on or in the circuit board. The pair of traces includes a first trace and a second trace. The first trace includes a first segment and a second segment continuously joined to the first segment. The first segment coincides with a first longitudinal axis. The second trace includes a first segment that runs alongside the first segment of the first trace. The second trace also includes a second segment that runs alongside the second segment of the first trace. The second segment of the second trace is continuously joined to the first segment of the second trace. The second segment of the second trace coincides with the first longitudinal axis.
Abstract:
An end of a first line and an end of a second line of a first write wiring pattern are arranged on both sides of a third line of a second write wiring pattern. Circular connection portions are provided at the ends of the first line and the second line. In addition, through holes are formed in respective portions of a base insulating layer below the connection portions. Each connection portion comes in contact with a connecting region of a suspension body within the through hole.
Abstract:
Methods are provided for reducing port to port crosstalk on a multiport assembly. Steps of the method include placing at least one BEMI in at least one compensation region, disposed on a PCB. The BEMI reduces port to port crosstalk noise by generating an opposite polarity signal to an unwanted noise signal generated through port to port adjacency. The PCB includes a plurality of ports, at least including adjacent first and second ports, each of which is an RJ45 jack port. Each port of the plurality of ports includes a plurality of modular insert pins, and is associated with an IDC pin group. The at least one compensation region includes one or more regions for generating noise compensation with respect to crosstalk noise resulting from coupling between respective modular insert pins of, or IDC pins associated with, the first and second ports, respectfully.
Abstract:
An integrated circuit package having a multi-segment transmission line transformer for impedance matching a packaged integrated circuit, such as a driver or receiver, to a printed circuit board (PCB) transmission line to which the packaged chip is attached by, for example, solder balls. In one exemplary embodiment, a three-segment transmission line transformer provides improved broadband performance with the advantage of having a middle segment with a flexible length for easier routing. The length of each end segment of the three-segment transformer is adjusted to provide at least partial cancellation of reflections between the PCB and the transformer, and between the transformer and a circuit on the integrated circuit, respectively. Further, the inductive reactance of the solder balls and via wiring may be cancelled out by the transformed chip impedance to provide a non-inductive termination to the PCB transmission line at approximately one-half the highest data rate of the channel.