Abstract:
An electronic device includes: a substrate having an upper surface and a lower surface; a first electronic component mounted on the upper surface of the substrate; a second electronic component mounted on the lower surface of the substrate; and a mold portion covering the second electronic component without covering the first electronic component. The first electronic component is bonded to the upper surface on the first relative surface via a conductive first bonding member. The second electronic component is bonded to the lower surface via a second bonding member on a second relative surface relative to the lower surface.
Abstract:
What is described is a mounting aid for mounting electrical components, in particular electrolytic capacitors or chokes, on a printed circuit board, said mounting aid comprising a body, which has compartments for receiving the electrical components, wherein the compartments have a base with openings for the insertion of connection wires of the electrical components, and metal parts fastened to the body, which metal parts each form at least one contact pin on the underside of the body and each from a busbar for connection to electrical components in a plurality of compartments of the body.
Abstract:
An electrical device for soldering to a circuit board with a solder includes a capacitor, a lead frame including a solder dam, and a solder joint electrically coupling the capacitor to the lead frame. The solder dam includes one of a physical barrier to flow or an area of reduced wettability to the solder. The solder dam is between the solder joint and the circuit board. The solder dam is on one or both of a lead portion and main portion of the lead frame. In one embodiment, the first solder dam extends substantially the full width of the first lead portion. The solder dam may be a barrier and/or include a metal oxide. A method of manufacturing the device includes soldering a lead frame to a capacitor with a solder and modifying a surface on the lead frame to include a physical barrier and/or an area of reduced wettability.
Abstract:
Provided is a power converter which is applied to a power converter equipped with a switching element provided on a line, and a radiator connected to a predetermined potential such as a ground potential. A noise eliminator in which a conductive member is covered with insulator is provided between the switching element (semiconductor switch) and the radiator (heatsink). A flexible connecting line connected to a conductive member of the noise eliminator is connected to an on-board line disposed on a circuit board.
Abstract:
Provided are a circuit assembly in which it is possible to eliminate or reduce a level difference between a mounting surface of a substrate and portions to which terminals that are electrically connected to a conductive member are connected, and that can be easily produced, and a method for manufacturing the same. A circuit assembly includes a substrate provided with openings and an electronic component mounted on one side of the substrate, a conductive member that is a plate-shaped member fixed to another side of the substrate, the conductive member constituting a conductive path, and a relay member that is fixed to a surface on the substrate side of the conductive member and made of an electrically conductive material, the relay member being accommodated in the openings formed in the substrate, at least one terminal of the electronic component being connected to the relay member.
Abstract:
A circuit board, on which a packaged semiconductor integrated circuit is to be mounted, includes a substrate, a heat-dissipating connection pad, and a first open area. The substrate includes a substrate body having a main surface, a metal layer located on the main surface, and an insulating layer located on the metal layer. In the heat-dissipating connection pad, the metal layer is exposed from an opening in the insulating layer. The heat-dissipating connection pad is connectable to a heat-dissipating unit of the semiconductor integrated circuit via a bond. In the first open area, the metal layer is exposed from an opening in the insulating layer located outboard with respect to a periphery of the heat-dissipating connection pad.
Abstract:
Embodiments of the present disclosure are directed to a leadframe package with recesses formed in outer surface of the leads. The recesses are filled with a filler material, such as solder. The filler material in the recesses provides a wetable surface for filler material, such as solder, to adhere to during mounting of the package to another device, such as a printed circuit board (PCB). This enables strong solder joints between the leads of the package and the PCB. It also enables improved visual inspection of the solder joints after the package has been mounted.
Abstract:
A shock resistant fuselage system includes first and second fuselage side walls, each of the first and second fuselage side walls having a plurality of guide posts, and a printed circuit board (PCB) rigidly attached to at least one of the first and second fuselage side walls, the PCB having a plurality of guide slots, each of the plurality of guide posts slideably seated in a respective one of the plurality of guide slots so that elastic deformation of the PCB is guided by the guide slots between the first and second fuselage side walls.
Abstract:
A display device is provided. The display device includes a light engine having light emitting components mounted to a flexible circuit board having a flexible graphite substrate. The flexible circuit board includes a dielectric layer formed on the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the light emitting components for improved cooling of the heat generated by the light emitting component and surrounding devices.
Abstract:
A flexible circuit board having a flexible graphite substrate is provided. The flexible circuit board includes a dielectric layer formed on the surface of the flexible graphite substrate and an electrically conductive layer formed on the surface of the dielectric. Electronic components are mounted to the flexible circuit board to form a circuit arrangement. A thermally conductive conduit can be disposed in thermal and physical contact with a surface of the electronic component and the surface of the flexible graphite substrate to. The high in-plane thermal conductivity graphite substrate provides enhanced heat transfer capability to effectively move of heat away from the electronic components for improved cooling of the heat generating electronic component and surrounding devices.