Abstract:
A flexible printed circuitboard (FPC) with reinforcement structure is disclosed, which comprises: a flexible printed circuitboard (FPC), configured with an extended part at a side thereof; and an a stiffener, stacking on a surface of the FPC on the area excepting the extended part while configuring a recess on the stiffener at the position thereof corresponding to the extending direction of the extended part. With the aforesaid structure, it can reduce the shear stress from concentrating at the joint between the extended part and the FPC and thus prevent the FPC from breaking so that the strength of the FPC can be enhanced.
Abstract:
A package mounted module wherein a package board on the topside surface of which a semiconductor chip such as an LSI is mounted is further mounted on the topside surface of the motherboard of a large-scale computing machine such as a large-sized computer, and a stiffener is provided on the underside surface of the motherboard. In order to improve the reliability of solder bonding, a stiffener is fixed to the motherboard with screws at plural locations on the periphery of the stiffener and is also fixed to the motherboard with a screw in the central part of the stiffener.
Abstract:
A circuit board module includes a circuit board and a reinforcing substrate. At least one electronic element is disposed on one surface of the circuit board. The reinforcing substrate is connected to a portion of the surface and disposed around the electronic element. A method for reinforcing the structure of the circuit board module is also disclosed.
Abstract:
A driver module structure includes a flexible circuit board (2) provided with a wiring pattern (7), a semiconductor device mounted on the flexible circuit board (2), and an electrically conductive heat-radiating member (4) joined to the semiconductor device. The wiring pattern (7) includes a ground wiring pattern (8). The flexible circuit board (2) has a cavity (9) that exposes a portion of the ground wiring pattern (8). The exposed portion of the ground wiring pattern (8) and the heat-radiating member (4) are connected to establish electrical continuity via a member (11) that is fitted into the cavity (9).
Abstract:
Apparatus and methods are provided for constructing balanced semiconductor chip package structures that minimize bowing, in-plane strain and/or other thermally induced mechanical strains that may arise during thermal cycling, to thus prevent structural damage to chip package structures.
Abstract:
A circuit board, an electronic circuit device, and a display device, in which generation of an edge short-circuit is prevented, includes wirings that are arranged much more densely. A circuit board includes a substrate having a first main surface on which a semiconductor integrated circuit is mounted and a second main surface; a plurality of first wirings including a bump connecting terminal on the first main surface; and a plurality of second wirings on the second main surface, wherein the plurality of the second wirings are arranged independently from each other and overlap with a region where the semiconductor integrated circuit is mounted, and the circuit board includes a wiring portion on the second main surface in a region overlapping with a region where the bump connecting terminal is arranged.
Abstract:
A method of manufacturing an electronic component-embedded board is provided which is capable of suppressing warpage without requiring complicated processes at low cost and which offers high productivity and economic efficiency. A worksheet 100 includes insulating layers 21 and 31 on one surface of an approximately rectangular substrate 11, and an electronic component 41 and a plate-like frame member (member) 51 embedded inside the insulating layer 21, wherein the plate-like frame member 51 satisfying the relationship represented by the following formula (1): α1
Abstract:
The present invention provides a disc drive and a flexible cable assembly therein. The disc drive includes a circuit board, a flexible cable assembly coupled to the circuit board, and an optical pick-up unit which the flexible cable assembly is electrically connected to. The flexible cable assembly includes a flexible cable and a protector partly attached to the flexible cable. When the optical pick-up unit processes the data on a disc, the protector keeps the flexible cable away from the disc.
Abstract:
An optical module according to the present invention comprises an electric wiring substrate, a first optical element mounted on the electric wiring substrate so that a heat generation section of the first optical element is positioned relatively close to a substrate surface of the electric wiring substrate and a heat sink mounted on the same plane as the mounting plane of the first optical element on the electric wiring substrate, the heat sink being mounted on the electric wiring substrate so that an area of electric wiring on the electric wiring substrate overlaps the heat sink. This improves the efficiency of heat radiation of the optical module.
Abstract:
A flexible printed circuit board includes a flexible base, a working trace region, and at least one reinforcement trace. The working trace region and the at least one reinforcement trace are formed on the flexible base. The working trace is formed by a number of working traces. In the flexible base, the at least one reinforcement trace is disposed at a periphery of the working trace region.