Abstract:
Variations in charged-particle-beam (CPB) source location are determined by scanning an alignment aperture that is fixed with respect to a beam defining aperture in a CPB, particularly at edges of a defocused CPB illumination disk. The alignment aperture is operable to transmit a CPB portion to a secondary emission surface that produces secondary emission directed to a scintillator element. Scintillation light produced in response is directed out of a vacuum enclosure associated with the CPB via a light guide to an external photodetection system.
Abstract:
The invention relates to a particle beam device (100) for imaging, analyzing and/or processing an object (114). The particle beam device (100) comprises a first particle beam generator (300) for generating a first particle beam, wherein the first particle beam generator (300) has a first generator beam axis (301), wherein an optical axis (OA) of the particle beam device (100) and the first generator beam axis (301) are identical; a second particle beam generator (400) for generating a second particle beam, wherein the second particle beam generator (400) has a second generator beam axis (401), wherein the optical axis (OA) and the second generator beam axis (401) are arranged at an angle being different from 0° and 180°; a deflection unit (500) for deflecting the second particle beam from the second generator beam axis (401) to the optical axis (OA) and along the optical axis (OA), wherein the deflection unit (500) has a first opening (501) and a second opening (502) being different from the first opening (501), wherein the optical axis (OA) runs through the first opening (501), wherein the second generator beam axis (401) runs through the second opening (502); an objective lens (107) for focusing the first particle beam or the second particle beam onto the object (114), wherein the optical axis (OA) runs through the objective lens (107); and at least one detector (116, 121, 122) for detecting interaction particles and/or interaction radiation.
Abstract:
A method of operating a multi-beam particle beam system includes: generating a multiplicity of particle beams such that they each pass through multipole elements that are either intact or defective; focusing the particle beams in a predetermined plane; determining excitations for the deflection elements of the multipole elements; exciting the deflection elements of the multipole elements that are intact with the determined excitations; modifying the determined excitations for the deflection elements of the multipole elements that are defective; and exciting the deflection elements of the defective multipole elements with the modified excitations. Modifying the determined excitations includes adding corrective excitations to the determined excitations. The corrective excitations are the same for all deflection elements of the defective multipole element.
Abstract:
A particle beam system includes a multi-beam particle source and a magnetic multi-deflector array. The magnetic multi-deflector array includes a coil that is arranged such that, during use of the particle beam system, a multiplicity of individual particle beams substantially passes through the first coil so that they are deflected in an azimuthal direction to correct an azimuthal telecentricity error of the particle beam system so that the individual particle beams telecentrically impinge on an object plane of the particle beam system.
Abstract:
[Object] To provide a plasma processing apparatus capable of expanding an formation region of plasma generated on an upper electrode side to increase the processing speed and a control method therefor. [Solving Means] A plasma processing apparatus according to an embodiment of the present invention includes a vacuum chamber, a substrate-supporting stage, a counter electrode, and a resonant circuit. The substrate-supporting stage is disposed inside the vacuum chamber and is connected to a first high-frequency power supply circuit that supplies a high-frequency power at a first frequency. The counter electrode is disposed in opposite to the stage and is connected to a second high-frequency power supply circuit that supplies a high-frequency power at a second frequency. The resonant circuit allows high-frequency current at the second frequency from the counter electrode to pass therethrough.
Abstract:
A valve for a charged particle beam microscope comprises: a valve seat comprising an opening; and a valve member comprising a valve member body and a sealing ring on a first surface of the valve member body. The valve member is movable between a first position where the sealing ring seals around the opening and a second position where the valve member is spaced apart from the opening. The valve member further comprises an electrically conducting shielding member extending at least at a side surface of the valve member body facing the opening in the second position.
Abstract:
A multi-beam pattern definition device for use in a particle-beam processing or inspection apparatus, which is irradiated with a beam of electrically charged particles through a plurality of apertures to form corresponding beamlets, comprises an aperture array device in which said apertures are realized according to several sets of apertures arranged in respective aperture arrangements, and an absorber array device having openings configured for the passage of at least a subset of beamlets that are formed by the apertures. The absorber array device comprises openings corresponding to one of the aperture arrangement sets, whereas it includes a charged-particle absorbing structure comprising absorbing regions surrounded by elevated regions and configured to absorb charged particles impinging thereupon at locations corresponding to apertures of the other aperture arrangements of the aperture array device, effectively confining the effects of irradiated particles and electric charge therein.
Abstract:
A method of forming a multipole device (100) for influencing an electron beam (11) is provided. The method is carried out in an electron beam apparatus (200) that comprises an aperture body (110) having at least one aperture opening (112). The method comprises directing the electron beam (11) onto two or more surface portions of the aperture body (110) on two or more sides of the at least one aperture opening (112) to generate an electron beam-induced deposition pattern (120) configured to act as a multipole in a charged state, particularly configured to act as a quadrupole, a hexapole and/or an octupole. The electron beam-induced deposition pattern (120) can be an electron beam-induced carbon or carbonaceous pattern. Further provided are methods of influencing an electron beam in an electron beam apparatus, particularly with a multipole device as described herein. Further provided is a multipole device for influencing an electron beam in an electron beam apparatus in a predetermined manner.