Abstract:
A lighting device that emits illumination light from two or more angular directions onto a sample surface to be measured, an imaging optical lens, and a monochrome two-dimensional image sensor are provided. This configuration provides a method and an apparatus that take a two-dimensional image of the sample surface to be measured at each measurement wavelength and accurately measure multi-angle and spectral information on each of all pixels in the two-dimensional image in a short time. In particular, a multi-angle spectral imaging measurement method and apparatus that have improved accuracy and usefulness are provided.
Abstract:
Disclosed herein is a microparticle analysis device including: a light source configured to irradiate a microparticle with light; an acousto-optic modulator configured to diffract fluorescence generated from the microparticle due to the light irradiation; a slit configured to allow transmission of only diffracted light in a diffraction center wavelength region among diffracted light beams from the acousto-optic modulator; and a detector configured to detect the diffracted light in the diffraction center wavelength region transmitted through the slit.
Abstract:
A method includes directing a portion of a laser beam output from a laser along a secondary beam path toward a detector, the secondary beam path being distinct from a main beam path of the laser beam; generating a bandwidth selective interference pattern of the laser beam on the detector; detecting, at the detector, a width of a fringe within the interference pattern to thereby measure measuring a bandwidth of the laser beam; and homogenizing the laser beam traveling along the secondary beam path prior to generation of the bandwidth selective interference pattern. The homogenizing includes diffusing the laser beam; and introducing a time dependent, position dependent, or both time and position dependent random modulation to the wavefront of the laser beam to reduce fluctuations in the detected fringe width and to reduce the influence of spatial coherence of the laser beam on the detected interference pattern.
Abstract:
A minute particle analyzing device includes: a light source; a first condenser lens for condensing light from the light source to a first end of a multimode optical fiber; a second condenser lens for condensing the light emerging from a second end of the multimode optical fiber to a minute particle; and a detector for detecting light generated from the minute particle by the application of the light from the light source.
Abstract:
An imaging system includes a platform for placement of a sample or an animal to be imaged, and at least one excitation light source for irradiating the sample or animal to stimulate an emission at a plurality of different center wavelengths. An acousto-optic tunable filter (AOTF) is provided that includes a piezoelectric transducer crystal for emitting an acoustic wave having a ground electrode disposed on one side of the piezoelectric crystal. A patterned electrode layer is disposed on a side of the piezoelectric crystal opposite the ground electrode. The patterned electrode layer includes a continuous region proximate to its center and a discontinuous region, a pattern in the discontinuous region comprising a plurality of spaced apart features electrically connected to the continuous region, and an AO interaction crystal receiving the acoustic wave attached to the ground electrode or the patterned electrode layer.
Abstract:
A method of detecting oxygen and/or chemical content in a subject, comprising generating at least one spectral image of the subject; generating at least one spectral image of a reference object; comparing spectrum from the subject image to the reference image to thereby reveal the relative oxygen content of the subject. A system for determining the level of oxygenation of the blood of a subject body part comprising: a hyperspectral image generator for generating a plurality of spectral images; an image capture device for capturing the spectral images; a processor for generating hyperspectral image cubes such that the spectrum of the body part is extracted and normalized using the spectrum from the reference object to cancel out the spectral response of the light source and the imager; said processor comparing spectral from a subject image to reference images to thereby reveal the relative oxygen content of the subject.
Abstract:
Embodiments of hyperspectral scene projection/generation systems and methods are disclosed. One method embodiment, among others, comprises dispersing a beam of light at one of a plurality of selectable wavelengths, the beam of light corresponding to a scene, and displaying a spectral image of the scene corresponding to the dispersed beam of light at one of the plurality of selectable wavelengths.
Abstract:
The arrangement for examining microscope preparations with a scanning microscope comprises a laser (1) and an optical means (12) which images the light generated by the laser (1) onto a specimen (13) that is to be examined. Provided between the laser (1) and the optical means (12) is an optical component (3, 20) that spectrally spreads, with a single pass, the light generated by the laser (1). The optical component (3, 20) is made of photonic band-gap material. It is particularly advantageous if the photonic band-gap material is configured as a light-guiding fiber (20).
Abstract:
An optical spectrum analyzer detects a light output that is dependent on the frequency of light in a wavelength range of light to be measured. The optical spectrum analyzer includes a waveguide acousto-optic tunable filter including a piezoelectric substrate, optical waveguides, and an IDT, a light source for providing, to the waveguide acousto-optic tunable filter, reference light having a particular wavelength outside the wavelength range, a driving circuit for providing, to the waveguide acousto-optic tunable filter, a high frequency signal for exciting an IDT, and an arithmetic device that, on the basis of the wavelength of selected light when reference light is incident, and an exciting frequency, corrects the wavelength of the selected light, which is obtained from the light to be measured.
Abstract:
A method and apparatus in which a first absorption measurement is made over a first frequency interval or set of frequency intervals including one or more absorptions from a spectral band of interest. The first absorption measurement is ideally selected to be near the frequency of a peak in the absorption spectrum, providing high sensitivity at low gas concentrations. A second absorption measurement is made over a second frequency interval. The second absorption measurement is made to include a contribution from the broadening of the absorption spectrum at higher concentrations. The second absorption measurement provides sensitivity at higher concentrations. The two absorption measurements are then combined to deduce the target sample concentration as the absorption line spectrum changes shape with concentration.