Abstract:
Aluminum oxide films characterized by a dielectric constant (k) of less than about 7 (such as between about 4-6) and having a density of at least about 2.5 g/cm3 (such as about 3.0-3.2 g/cm3) are deposited on partially fabricated semiconductor devices over both metal and dielectric to serve as etch stop layers. The films are deposited using a deposition method that does not lead to oxidative damage of the metal. The deposition involves reacting an aluminum-containing precursor (e.g., a trialkylaluminum) with an alcohol and/or aluminum alkoxide. In one implementation the method involves flowing trimethylaluminum to the process chamber housing a substrate having an exposed metal and dielectric layers; purging and/or evacuating the process chamber; flowing t-butanol to the process chamber and allowing it to react with trimethylaluminum to form an aluminum oxide film and repeating the process steps until the film of desired thickness is formed.
Abstract:
A film forming apparatus configured to form a film on part of a work. The film forming apparatus comprises a film forming vessel comprising a first mold located above the work and a second mold located below the work to be opposed to the first mold. The first mold is configured to include a first recessed portion that is recessed upward viewed from a film formation target part of the work and a first planar portion arranged around the first recessed portion. The second mold is configured to include a second planar portion in a place opposed to the first planar portion. The film forming apparatus also comprises a first seal member located between the first planar portion and the work. The first seal member is configured to come into contact with the first planar portion and the work when the work is away from the first planar portion. The film forming apparatus further comprises a second seal member located between the second planar portion and the work. The second seal member is configured to come into contact with the second planar portion and the work when the work is away from the second planar portion. The second seal member is provided on a lower face of the work. This configuration suppresses poor film formation when the seal member is placed between the film forming vessel and the work.
Abstract:
A spectral reflectometer system for measuring a substrate is provided. A light source is provided. At least one optical detector is provided. An optical cable comprises a plurality of optical fibers, wherein the plurality of optical fibers comprises a first plurality of optical fibers, which are transmission optical fibers which extend from the light source to an optical path, and a second plurality of optical fibers, which are reflection optical fibers which extend from the optical path to the at least one optical detector. A microlens array is in the optical path.
Abstract:
A method for processing a semiconductor wafer is provided. The method includes performing a discharging process over the semiconductor wafer in a discharging chamber which is enclosed. The method further includes processing the semiconductor wafer by use of a first processing module after the discharging process. During the discharging process, charged particles applied on the semiconductor wafer are tuned based on the characteristics of the surface of the semiconductor wafer.
Abstract:
A method for initializing a first operation in a first module at a first start time value in a first time base, the method comprising generating a clock signal, generating a second time base in the first module based on the clock signal, determining a second sync value in the second time base, determining a first sync value in the first time base corresponding to a second sync value in the second time base, determining a start trigger value in the second time base based on the first sync value and the start time value in the first time base, and initializing the first operation in the first module based on the start trigger value and a current value of the second time base in the first module.
Abstract:
A sample collection component including a main body and a removable light shielding component is provided. The main body has a sample storing space which is sealable and allows light to pass through. The removable light shielding component is disposed on the main body and located outside the sample storing space for shielding at least a portion of the light passing through the sample storing space. In addition, a manufacturing method of the sample collection component is also provided.
Abstract:
Methods and systems for depositing material layers with gap variation between film deposition operations. One method includes depositing a material layer over a substrate. The depositing is performed in a plasma chamber having a bottom electrode and a top electrode. The method includes providing a substrate over the bottom electrode in the plasma chamber. The method sets a first gap between the bottom and top electrodes and performs plasma deposition to deposit a first film of the material layer over the substrate while the first gap is set between the bottom and top electrodes. The method then sets a second gap between the bottom a top electrodes and performs plasma deposition to deposit a second film of the material layer over the substrate while the second gap is set between the bottom and top electrodes. The material layer is defined by the first and second films and the first gap is varied to the second gap to offset expected non-uniformities when depositing the first film followed by the second film.
Abstract:
A substrate processing system for depositing film on a substrate includes a processing chamber defining a reaction volume and including a substrate support for supporting the substrate. A gas delivery system is configured to introduce process gas into the reaction volume of the processing chamber. A plasma generator is configured to selectively generate RF plasma in the reaction volume. A clamping system is configured to clamp the substrate to the substrate support during deposition of the film. A backside purging system is configured to supply a reactant gas to a backside edge of the substrate to purge the backside edge during the deposition of the film.
Abstract:
The present application is directed to methods and devices for altering material properties of lubricants and other cross-linkable compounds comprising organic or organometallic materials through exposure to energized gaseous species. The energized gaseous species may create reactive sites among lubricant molecules that may alter their material properties by cross-linking at least a portion of the lubricant molecules. The cross-linked lubricant may reduce the ability of the lubricant to migrate away when force is applied between lubricated sliding friction surfaces.
Abstract:
A plasma generator for an ion implanter is provided. The plasma generator includes an ionization chamber for forming a plasma that is adapted to generate a plurality of ions and a plurality of electrons. An interior surface of the ionization chamber is exposed to the plasma and constructed from a first non-metallic material. The plasma generator also includes a thermionic emitter including at least one surface exposed to the plasma. The thermionic emitter is constructed from a second non-metallic material. The plasma generator further includes an exit aperture for extracting at least one of the plurality of ions or the plurality of electrons from the ionization chamber to form at least one of an ion beam or an electron flux. The ion beam or the electron flux comprises substantially no metal. The first and second non-metallic materials can be the same or different from each other.