Abstract:
A focusing guide for focusing an ion beam passing through the chamber of an ion analyzer is provided. A controllable electric of magnetic field is generated around the focusing guide to direct selected ions through the chamber outlet without significantly reducing ion beam current intensity. The focused ion beam reduces collisions of ions with the chamber and also reduces secondary electron generation which can weaken ion beam intensity and increase ion implantation processing time.
Abstract:
An energy filter, particularly for electron microscopes, in which the setting of different energy bandwidths takes place electron-optically. For this purpose, one or more deflecting systems and one or more transfer lenses are provided at the filter exit. A diaphragm arrangement is arranged in the dispersion plane and has an opening with a stepped edge region. Slit diaphragms with different slit lengths can be simulated by deflection of the electron beam. The deflection of the electron beam effected by the dispersion system(s) perpendicularly to the dispersive direction of the filter is compensated again by a succeeding transfer lens or a further deflecting system, so that an image displacement is also compensated. In a second embodiment, a respective slit edge is arranged in two mutually conjugate spectrum planes. A deflecting system preceding each slit edge, different spectrum portions are filtered out by the two slit edges, according to the excitation of the deflecting systems. The energy bandwidth can be varied continuously in this embodiment.
Abstract:
A mass-analysed ion beam generator in which the ion beam is in the form of a thin flat ribbon with its major transverse dimension aligned parallel with the direction of the mass-analysing magnetic field.
Abstract:
An electron microscope comprises an energy-selective filter (10) which is arranged ahead of the high-voltage field in the electron gun (2). Because the filter carries high-voltage potential and is arranged within the gun space (14) which is filled with SF.sub.6 gas, problems arise regarding electrical and mechanical passages to the filter. Notably the centering of the filter is problematic. In order to enable suitable aperture adjustment of the filter nevertheless (for current limitation and for avoiding optical aberrations introduced into the beam by the filter), there is provided an entrance diaphragm (30) which is rigidly connected to the filter parts, notably to a pole face or to a field-defining closing piece (48a) of the filter.
Abstract:
An ion implantation system composed of an ion source to generate ion beam, a mass analyzing region to select ions having a predetermined mass from the ion beam, an acceleration region to accelerate the ion beam selected, scanning regions to respectively scan the ion beam toward the X and Y directions, and protecting means located along the exposed surface of the inner wall of the mass analyzing region. The protecting means may be formed of a thin silicon plate, and located to cover the inner wall of the mass analyzing region. Preferably, the silicon plate is located at an upper and a lower portion of an exposed surface of the inner wall of the mass analyzing region. The protecting means may be formed of plurality of silicon plates that can be disassembled.
Abstract:
An ion implantation apparatus including a resolving aperture-shutter assembly (31) placed in the ion beam path (18). The resolving aperture-shutter assembly includes a movable shutter (34) and a shutter housing surrounding the movable shutter (34). Selected ions in an ion beam path (18) pass through a hole (44) in movable shutter (34) when the movable shutter (34) is in a first position, and are blocked by the solid surfaces when the movable shutter (34) is in a second position. The enclosure (32, 33, 39) completely surrounds the movable shutter (34). The enclosure (32, 33, 39) includes a first aperture (42) aligned with the ion beam path (18) for allowing the selected ions to enter the enclosure and a second aperture (41) aligned with the ion beam path (18) for allowing the selected ions to exit the enclosure after passing through the hole (44) in the movable shutter.
Abstract:
A method and apparatus for selecting the spatial energy spread of an electron beam for producing an image of an object, as in an electron microscope. An energy-dispersive member is arranged in the vicinity of the electron beam source to widen the electron beam in a dispersion direction. Selection of an energy dispersion within the beam is achieved by selecting a number of pixels having such a local energy dispersion in the image plane of the object.
Abstract:
An ion beam deposition system in which ions of different masses and from different sources are independently steered into different parts of an analyzer magnet to be converged into a single wide beam which maintains a perpendicular relationship between the beam and the target. The beam is decelerated by a slit type deceleration lens to an energy suitable for deposition. The target is then scanned across the decelerated beam. The beam is maintained at high current and low pressure by confining electrons away from the magnet and/or adding energy to the low pressure atmosphere inside the analyzer magnet to produce a plasma of electrons and charged particles in order to provide adequate neutralizing of the space charge of the beam.
Abstract:
An ion implantation system is modified to allow variation in the size of the aperture of the mass resolving system, thereby allowing more ions of one mass or ion of more than one mass, such as isotopes, to pass through said opening. Including all isotopes of the desired dopant ions to be collected increases beam current, and consequently the throughput of the implantation process, reduces contamination, and improves the dosage control.
Abstract:
A Wien filter for use in charged particle beam systems is disclosed, having two opposed resistive magnetic pole pieces separated from a set of excitation coils by an electrically insulating material. Two opposed electric pole pieces are positioned in orthogonal relationship to and in physical contact with the magnetic pole pieces to form a physical aperture through which the charged particles will pass. The resistivity of the magnetic pole pieces is such that sufficient current will flow through them between the electric pole pieces to establish a uniform electric field over the entire physical aperture.