Abstract:
Disclosed herein is a printed circuit board, including: metal bumps having constant diameters and protruding over an insulation layer; a circuit layer formed beneath the insulation layer; and vias passing through the insulation layer to connect the metal bumps with the circuit layer.
Abstract:
Disclosed herein is a printed circuit board, including: an upper circuit layer including connection pads made of a conductive metal and buried in an insulation layer; and metal bumps, each having a constant diameter, which are integrated with the connection pads and protrude over the insulation layer.
Abstract:
A multilayer wiring substrate is manufactured through a recess forming step, a gold-diffusion-prevention-layer forming step, a terminal forming step, resin-insulating-layer forming step, a conductor forming step, and a metal-layer removing step. In the recess forming step, a copper foil layer is half-etched so as to form recesses. In the gold-diffusion-prevention-layer forming step, a gold diffusion prevention layer is formed in each recess. In the terminal forming step, a gold layer, a nickel layer, and a copper layer are stacked in sequence on the gold diffusion prevention layer to thereby form a surface connection terminal. In the resin-insulating-layer forming step, a resin insulating layer is formed, and, in the conductor forming step, via conductors and conductor layers are formed. In the metal-layer removing step, the copper foil layer and the gold diffusion prevention layer are removed so that the gold layer projects from the main face of the laminated structure.
Abstract:
A single-layer component package comprising: a single conductive-pattern layer having a first surface; an insulating-material layer on the first surface of the single conductive-pattern layer; in an installation cavity inside the insulating-material layer, a semiconductor component having flat contact zones; and solid contact pillars containing copper and solderlessly, metallurgically and electrically connecting the flat contact zones to the single conductive-pattern layer.
Abstract:
There is disclosed a printed wiring board comprising: an electrically insulating flexible layer which has on one of its opposite sides a protrusion which forms a corresponding recess on the other side of the flexible layer; an electrically conducting layer formed on the protrusion; and a wire formed on the flexible layer, connected to the conducting layer, and extending in a direction. The conducting layer has a shape long in the direction of extension of the wire.
Abstract:
A stacked mounting structure includes at least two substrates namely a first substrate on which a first protruding electrode is formed and a second substrate on which a second protruding electrode is formed, and an intermediate substrate which is disposed between the first substrate and the second substrate, and which connects the first substrate and the second substrate by leaving a predetermined gap between the first substrate and the second substrate. Mounted components are disposed in the gap between the first substrate and the second substrate. The first protruding electrode and the second protruding electrode are connected in an opening which is provided in the intermediate substrate.
Abstract:
A semiconductor device has a vertically offset bond on trace (BOT) interconnect structure. The vertical offset is achieved by forming a first conductive layer extending above a surface of a carrier. The first conductive layer is pressed into a surface of a substrate so that the first conductive layer is recessed below the surface of the substrate. The carrier is removed. A second conductive layer is formed above the surface of the substrate to create the vertical offset between the first and second conductive layers. The vertical offset is about 20 micrometers. A conductive via is formed through the substrate. Bond wire bumps are formed on the first and second conductive layers. The bond wire bumps are about 10 micrometers in height. A seed layer is formed over the carrier prior to forming the first conductive layer and removed after forming the second conducive layer.
Abstract:
A circuit board including a dielectric layer, a circuit layer, at least one conductive joint column, and a solder mask layer is provided. The circuit layer having at least one pad is in contact with the dielectric layer. The conductive joint column is disposed on the pad. The solder mask layer is disposed on the dielectric layer and covers the circuit layer. The solder mask layer is in contact with the conductive joint column, and the conductive joint column penetrates the solder mask layer. A height of the conductive joint column is larger than a thickness of the solder mask layer. The enhanced reliability of bonding between another component and the conductive joint column will be provided. Further, a method of fabricating a circuit board is also provided.
Abstract:
A module arrangement which includes a land grid array (LGA) interposer structure, including an electrically insulating carrier plane, and at least one interposer mounted on a first surface of said carrier plane. The interposer possesses a hemi-toroidal configuration in transverse cross-section and is constituted of a moldable dielectric elastomeric material. A plurality of electrically-conductive elements are arranged about the surface of the at least one hemi-toroidal interposer and extend radically inwardly and downwardly from an uppermost end thereof into electrical contact with at least one component located on an opposite side of the electrically insulating carrier plane.
Abstract:
A semiconductor device includes a semiconductor chip of a multilayer wiring structure having an insulating film formed on a surface thereof, multiple electrode pads formed at a central part and an outer peripheral part of the insulating film, and multiple protective metal layers formed respectively on the electrode pads. The semiconductor device also includes a substrate having the semiconductor chip mounted thereon and including multiple substrate terminals formed on a surface thereof respectively in positions corresponding to the electrode pads. The semiconductor chip is mounted on the substrate by connecting a stud bump to a solder bump. The stud bump is formed on any one of each of the protective metal layers and each of the substrate terminals and the solder bump is formed on the other one of each of the protective metal layers and each of the substrate terminals.