Abstract:
A multilayer circuit board is provided that includes at least two insulating layers each sandwiched by circuit layers, thus having at least one internal circuit layer sandwiched by the at least two insulating layers. Via holes are formed in one or more of the insulating layers at the same pitch as bump electrodes of an integrated circuit chip, which permit insertion of the bump electrodes of an integrated circuit chip into the via holes of the multilayer circuit board. Metal films formed within the via holes are electrically connected to at least one of the circuit layers. An internal capacitor may be formed in a predetermined area of an insulating layer and predetermined areas of circuit layers which sandwich the predetermined area of the insulating layer and are opposed to each other. An internal resistor may be formed in an inner circuit layer.
Abstract:
An MMIC (Microwave Monolithic Integrated Circuit)-mounted substrate includes a double-metal-foil dielectric substrate having a dielectric substrate with a metal foil pattern formed on both sides of the substrate, an MMIC that is a surface-mount high power amplifier mounted on one side of the double-metal-foil dielectric substrate, and a metal chassis attached to the other side of the double-metal-foil dielectric substrate. The double-metal-foil dielectric substrate has a plurality of through holes. A copper foil pattern that is a metal foil pattern continuously extends to cover the inner surfaces of the through holes and both sides of the dielectric substrate, and solder is buried in the through holes.
Abstract:
An electronic package is provided having a surface mount electronic device connected to a circuit board. The package includes a circuit board and a surface mount electronic device. A mounting pad is formed on the circuit board. A plurality of vias are formed each having an opening extending into the circuit board and extending through the mounting pad. The package further includes a solder joint connecting a contact terminal of the surface mount device to the mounting pad on the circuit board. The solder joint extends at least partially into the openings in each of the plurality of vias to support the arrangement of the surface mount device on the circuit board.
Abstract:
A densely packed electronic assemblage has a substrate media for supporting at least one heat generating component and means for reducing the temperature of the at least one heat generating component. A heat sink cooperates with the heat removing element for reducing heat of the at least one heat generating component by absorbing heat from the at least one heat generating component.
Abstract:
A vertical routing structure for a multi-layered substrate having a lamination structure therein. The lamination structure has at least a through hole that links up both surfaces of the lamination structure. The vertical routing structure comprises a conductive rod and a conductive layer. The conductive rod is formed inside the through-hole with the ends protruding above the respective upper and lower surface of the lamination structure. The conductive layer is positioned in the space between the interior sidewall of the through-hole and the conductive rod. The vertical routing structure on the substrate is able to reduce the area for laying the required circuits or increase the wiring density in a given area.
Abstract:
A display device includes an organic electrroluminescence device provided on a first substrate, conductive metallic films provided on the first substrate at such positions as not to overlap with the organic electroluminescence device, a second substrate having a plurality of holes and conductive connection portions which are provided at peripheral portions forming the holes, and solder portions charged in the holes of the second substrate and, by being melted, electrically connecting the conductive metallic films of the first substrate with the conductive connection portions of the second substrate.
Abstract:
An intermediate board comprising: an intermediate board body having first and second faces wherein a semiconductor device is to be mounted on at least one of said first and second faces, said semiconductor device having a coefficient of thermal expansion that is equal to or larger than 2.0 ppm/null C. and smaller than 5.0 ppm/null C., and having surface mount terminals, said intermediate board body having a plurality of through holes through which said first and second faces communicate with each other, said intermediate board body containing an inorganic insulating material; and a plurality of conductor columns filling said through holes and containing a conductive metal, said conductor columns being to be connected with said surface mount terminals.
Abstract:
In the formation of through wirings in a silicon substrate and so forth, there was a need for the development of a technology that would allow metal to be reliably filled particularly in the vicinity of openings of through holes and other fine holes. This invention provides a metal filling method and member with filled metal sections in which, in the inflow and filling of a plating solution into through holes 11 of a substrate 10 by immersing said substrate 10 in heated and melted conductive metal, filled metal sections are formed by preliminarily forming a metal layer 15 on the inner surface of one of the ends of through holes 11 of this substrate 10 as well as on substrate top surface 13 around those openings, removing substrate 10 on which inflow and filling of the plating solution into through holes 11 has been completed from the plating solution, and then cooling to solidify the plating solution that has been filled into the through holes.
Abstract:
A heat dissipation structure of an IC includes a circuit board provided with through holes perforated thereinto, an IC mounted on the upper surface of the circuit board, a solder filling a space between the circuit board and the IC via the through holes and being cured, and solder lands formed on the circuit board and attached with the solder.
Abstract:
A method and product for fabricating a printed circuit board assembly comprising a via, wherein the method inhibits the flow of molten solder into the via during a wave soldering step, thereby preventing heat transfer that might otherwise degrade a solder joint at a top pad that is thermally coupled to the via. The method comprises the steps of: (1) fastening a bottom component to the bottom surface of the circuit board by a screening and reflow of solder paste that also generates a solder plug in the via; (2) fastening top components to the top surface of the circuit board by a screening and reflow of solder paste, wherein the top components comprise ball grid arrays and other surface mount devices that are to be affixed to pads which are connected to vias; and (3) wave soldering the bottom surface to affix additional components onto the circuit board, such as pin-in-hole components placed on the top surface. The solder plug formed in the via during the first step prevents molten solder from flowing into the via during the subsequent wave soldering step, thereby inhibiting heat transfer from the molten solder to the solder joint at the top pad.