Abstract:
A multilayer printed wiring board which permits the formation of fine wiring patterns, thereby increasing the density of wiring patterns. Using photosensitive glass having a coefficient of thermal expansion close to that of a copper film as a core substrate, a through hole is formed in the photosensitive glass by photolithography, a sputtering silicon oxide layer and a sputtering silicon nitride layer are formed to prevent leak of alkali metal ions from the photosensitive glass, a sputtering chromium layer, a sputtering chromium-copper layer and a sputtering copper layer are formed to enhance the adhesion strength between the copper film and the sputtering silicon oxide layer, and a copper film of 1 to 20 μm thick is formed. With resin filled into the interior of the through hole, a wiring layer is patterned by etching, an insulating layer is formed, and the surface is covered with a surface treatment layer and a cover coat.
Abstract:
A fabrication method of a circuit board is proposed, wherein a core layer is formed with a plurality of conductive traces, and photo resist is respectively applied on terminals of the conductive traces. Then, a non-solderable material is applied over the core layer as to cover the conductive traces except for the insulating material, and the non-solderable material is adapted to be surface-flush with the insulating material, allowing the insulating material to be exposed from the non-solderable material. Finally, the insulating material is removed from the core layer to expose the terminals of the conductive traces, wherein the exposed terminals are used as bond pads or bond fingers where solder balls, solder bumps or bonding wires can be bonded. This circuit board is cost-effectively fabricated by simplified processes, and beneficial in precisely exposing bond pads or bond fingers, thereby significantly improving yield of fabricated circuit boards.
Abstract:
Through holes 36 are formed to penetrate a core substrate 30 and lower interlayer resin insulating layers 50, and via holes 66 are formed right on the through holes 36, respectively. Due to this, the through holes 36 and the via holes 66 are arranged linearly, thereby making it possible to shorten wiring length and to accelerate signal transmission speed. Also, since the through holes 36 and the via holes 66 to be connected to solder bumps 76 (conductive connection pins 78), respectively, are directly connected to one another, excellent reliability in connection is ensured.
Abstract:
A printed circuit board having a permanent solder mask includes a substrate made of a glassfiber reinforced epoxy resin material. The top and bottom surfaces of the substrate are disposed thereon a conductive pattern respectively. An epoxy resin solder mask is coated on each surface of the substrate in such a way that the conductive pattern is divided into a sheltered portion covered by the solder mask and an unsheltered portion exposed outside. The solder mask also has an even and smooth outer surface with a micro-roughness ranging between 0.5 μm˜10 μm and an optimum thickness ranging between 2 μm˜200 μm.
Abstract:
A multilayer wiring board (11) is provided which includes a core substrate (12) including a plurality of through-holes (15). The through-holes (15) include through-hole conductors (17) on the inner walls of corresponding penetration holes (16) of a diameter of 200 μm or less. Interlayer insulating layers (31, 32) are disposed on opposite sides of the principal planes (13, 14) of the core substrate (12). Wiring layers (23, 24) are disposed on the surface of interlayer insulating layers (31, 32). The through-holes (15) are filled with a hardened filling material (18). Lid conductors (21, 22) close the openings of the through-holes (15). The value of linear expansion of the hardened filling material (18) is 1.2% or less in the temperature region from room temperature to the solder reflow temperature. The board has excellent connection reliability and exhibits little or no cracking or delamination in the lid conductor closing the openings of the through-holes and in the surrounding conductor area.
Abstract:
The electrical contacts, such as ball grid array (BGA) solder balls, of an integrated circuit (IC) are coupled to printed circuit board (PCB) bonding pads that include vias. According to an embodiment of an electronic assembly, the vias are formed off-center, so as to inhibit bridging between adjacent solder balls during a solder reflow operation by minimizing the effect of solder ball ballooning resulting from outgassing of a thermally expansive substance, such as a volatile organic compound (VOC) from the via channels. The bonding pads are separated into two groups, each having vias offset in a different direction, so that asymmetric surface tension forces in the molten solder during a solder reflow operation do not cause the IC to slide to one side. A substrate, an electronic assembly, an electronic system, and fabrication methods are also described.
Abstract:
A metal layer 18 is sandwiched between insulating layers 14 and 20 so that required strength is maintained. Hence it follows that the thickness of a core substrate 30 can be reduced and, therefore, the thickness of a multi-layer printed circuit board can be reduced. Formation of non-penetrating openings 22 which reach the metal layer 18 in the insulating layers 14 and 20 is simply required. Therefore, small non-penetrating openings 22 can easily be formed by applying laser beams. Thus, through holes 36 each having a small diameter can be formed.
Abstract:
The present invention provides a number of techniques for laminating and interconnecting multiple high-layer-count (HLC) substrates to form a multilayer package or other circuit component. A solder bump may be formed on the conductive pad of at least one of two HLC substrates. The solder bump preferably is formed from an application of solder paste to the conductive pad(s). An adhesive film may be positioned between the surfaces of the HLC substrates having the conductive pads, where the adhesive film includes an aperture located substantially over the conductive pads such that the conductive pads and/or solder bumps confront each other through the aperture. The HLC substrates then may be pressed together to mechanically bond the two substrates via the adhesive. The solder bump(s) may be reflowed during or after the lamination to create a solder segment that provides an electrical connection between the two conductive pads through the aperture in the adhesive film.
Abstract:
A system comprising a scavenging blade, a printed wiring board receiving portion, and a movement mechanism adapted to move the scavenging blade and printed wiring board receiving portion relative to each other, and to a method of removing excess fill material comprising providing a printed wiring board having filled holes and at least some excess fill material on a surface of the printed wiring board, providing a system comprising a scavenging blade, positioning the printed wiring board in the system, and causing the scavenging blade to traverse at least a portion of the printed wiring board in a manner that causes the scavenging blade to remove at least a portion of the excess fill material from the printed wiring board.
Abstract:
A heat dissipation structure includes a heat-producing electronic component on a substrate, a thermally conductive case, and grease. The electronic component and the substrate are housed in the case. The grease is provided between the case and the electronic component or the substrate for transmitting heat produced by the electronic component to the case. The case has contact surfaces that contact with the grease. The contact surfaces have free energy equal to or higher than 20 mN/m and roughness equal to or larger than 1.0 nullm.