Abstract:
A bendable area design for flexible printed circuitboard is disclosed. The flexible printed circuitboard (FPC) is comprised of: a flexible substrate; at least a circuit pattern; and a bendable area, being formed intersecting with the at least one circuit pattern and having at least a groove formed therein at a position corresponding to the intersection with the at least one circuit pattern; wherein the depth of the at least one groove is no larger than the thickness of the corresponding circuit pattern for preventing the circuit pattern from being cut off by the groove. By configuring the aforesaid bendable area in the FPC, stress generated by the bending of the FPC is restricted inside the bendable area effectively so that accurate control of the bending angle for bending FPC can be realized.
Abstract:
A tap tape of a tape carrier package prevents connection parts from being eroded. The tap tape includes a base film having a device hole formed to mount a driver chip for driving a panel of a flat panel display, input patterns positioned on the base film and having a plurality of electrode pads connected to a side of the device hole, output patterns positioned on the base film and having a plurality of electrode pads connected to the other side of the device hole; and connection parts positioned at the ends of the input patterns or the output patterns and having electrode pads of widths different from widths of the electrode pads.
Abstract:
A filet F is added to a portion constituting a corner portion C equal to or smaller than 90° in a crossing portion X of wiring patterns 58b, 58c and 58d, and a wiring pattern 58 is formed. Since the filet F is added, the wiring patterns are not made thin and are not disconnected in the crossing portion X. Further, since there is no stress concentrated to the crossing portion X, disconnection is not caused in the wiring patterns and no air bubbles are left between the crossing portion X of the wiring patterns and an interlayer resin insulating layer so that reliability of a printed wiring board is improved.
Abstract:
A dual layer flexible circuit for tape drives is provided that has a flexible substrate with first and second sides. A plurality of write trace pairs are provided on the substrate, with each write trace pair including a first write trace on the first side of the substrate and a second write trace on the second side of the substrate opposing the first write trace. Each first write trace has a width that is narrower than the width of each second write trace, thereby allowing for compensation of misalignment between the trace layers, avoiding variation in the capacitance and inductance of the full circuit.
Abstract:
Each wiring pattern is composed of a conductor layer and a tin plating layer, and includes a tip portion, a connection portion and a signal transmission portion. The width of the tip portion is equal to the width of the signal transmission portion, and the width of the connection portion is smaller than the widths of the tip portion and the signal transmission portion. The connection portions of wiring patterns and bumps of an electronic component are connected to one another, respectively, by heat-sealing when the electronic component is mounted. Respective distances A1, A2 are set to not less than 0.5 μm. Respective distances B1, B2 are set to not less than 20 μm. The thickness of the tin plating layer is set to not less than 0.07 μm and not more than 0.25 μm.
Abstract:
A single interconnection unit provides all of the signal connections required to operate a group of PMTs and to transmit signals therefrom to acquisition electronics exterior to an enclosure for the PMTs in a nuclear scanner. In a preferred embodiment, the interconnection unit provides a shielded differential pair connection for RF signals; power supply connections for the PMTs, providing all of the voltages required to operate PMTs and the associated circuits, as well as connections for those signals and appropriate ground planes. Preferably, interconnection unit comprises a flex circuit with end connectors designed to connect to a power supply unit and an acquisition unit remote from the PMTs. Connection points are provided along the length of the flexible circuit for connection to a PMT and provide all of the necessary connections for that PMT, including shared power supplies and ground buses, as well as connections dedicated to a particular PMT, including a dedicated RF differential pair, a dedicated digital line, and an associated ground plane.
Abstract:
Disclosed are IC package structures having stair stepped layers and which have no plated vias. Such structures can be fabricated either as discrete packages or as strips such as might be beneficial in for use with memory devices wherein critical or high speed signals can be routed along the length of the multi-chip strip package without having to have the signals ascend and descend from the interconnection substrate on which the assembly is mounted to the IC package termination and back as the signal transmits between devices.
Abstract:
The disclosure is directed to flexible boards, electrooptic devices having flexible boards, and electronic devices. In one example, wires are disposed longitudinally along the length of a flexible board. Terminals are arranged laterally across the width of the flexible board near an end of the flexible board, the terminals being electrically connected to the wires. Plating lead wires are electrically connected to the terminals and extend longitudinally from the terminals to a lateral edge of the flexible board. The width of the plating lead wires is less than the width of the wires. In certain embodiments, at least a portion of the terminals are alternatingly displaced on the flexible board in a staggered manner. This abstract is intended only to aid those searching patents, and is not intended to be used to interpret or limit the scope or meaning of the claims in any manner.
Abstract:
This disclosure concerns systems and devices configured to implement impedance matching schemes in a high speed data transmission environment. In one example, an electrical connection system is provided that includes a circuit board upon which are disposed a one or more signal contact pads, each of which is configured to communicate with a complementary element of an external electrical device such that a respective shunt capacitance is defined. One or more of the signal contact pads define at least one open portion through which communication signals cannot pass. The open portions of the one or more signal contact pads are configured to reduce a shunt capacitance that is defined at the coupling of each signal contact pad and corresponding connector. As well, one or more signal lines are likewise disposed on the circuit board such that each signal line is connected to a respective one of the signal contact pads. The circuit board finally includes one or more ground contact pads and power contact pads.
Abstract:
A metal wiring plate includes a soldering portion to which an electronic device is soldered and a wiring portion extending from the soldering portion and configured to electrically connect the electronic device to other device. The wiring portion includes a narrow portion located adjacent to the soldering portion. The width of the narrow portion is less than the width of the soldering portion so that the narrow portion helps prevent melted solder applied to the soldering portion from spreading to areas outside the soldering portion. The narrow portion allows the electronic apparatus to be surely soldered to the soldering portion without using solder resist.