Abstract:
A control unit has a substrate with an electrically conductive structure, an integrated circuit device, which is installed on the substrate in an electrically conductive manner, and a sacrificial structure on the substrate. The sacrificial structure is configured to be irreversibly destroyed if the integrated circuit device is removed from the substrate. The electrically conductive structure has at least one conducting track applied to the substrate. The sacrificial structure is formed by a segment of the conducting track. An electrically insulating connecting layer that connects the integrated circuit device, the substrate, and the segment of the conducting track is formed. The sacrificial structure can be destroyed by the connecting layer when the integrated circuit device is removed.
Abstract:
According to one embodiment, a semiconductor memory system includes a substrate, a plurality of elements and an adhesive portion. The substrate has a multilayer structure in which wiring patterns are formed, and has a substantially rectangle shape in a planar view. The elements are provided and arranged along the long-side direction of a surface layer side of the substrate. The adhesive portion is filled in a gap between the elements and in a gap between the elements and the substrate, where surfaces of the elements are exposed.
Abstract:
A test card includes a substrate and a goldfinger structure disposed on a side of the substrate. The goldfinger structure includes a first conductive section and a second conductive section. The first conductive section is inserted into a slot of a socket for electrically connecting to the socket. The second conductive section is connected to the first conductive section in a separable manner, and the second conductive section is inserted into the slot of the socket for electrically connecting to the socket after the first conductive section is cut for separating from the second conductive section.
Abstract:
An electronic module comprises: a multilayer circuit board having a bifurcated area along one edge and a plurality of electronic components mounted on at least one surface; a plurality of electrode pads functionally connected to the electronic components and positioned on the inner surfaces of the bifurcated area so that when the two legs of the bifurcated area are spread apart by about 180° the electrode pads align with respective contacts on a motherboard, and are connectable thereto, so that a secure connection may be created between the circuit board and the motherboard; and, two metal, heat spreading covers lockably enclosing the circuit board, one on either side, the covers further providing mating surfaces upon which a mechanical clamping device can engage and secure the module to a motherboard.
Abstract:
A memory card in a computer system includes a plurality of memory elements on a NAND flash board. The NAND flash board is connected to a controller board by a flexible connector. The flexible connector allows the memory elements and NAND flash controller to be physically separated so that waste heat from one does not impact the other. The flexible connector also allows elements to be organized to create an airflow channel. The airflow channel directs air in such a way as to enhance cooling.
Abstract:
A memory system is provided with a motherboard, and a memory controller and a plurality memory devices mounted on the motherboard. The motherboard comprises a unicursal-shape main wiring, and branch wirings branched from the main wiring to the respective memory devices. Further, the motherboard comprises an open stub wiring branched from a connecting point between a start end and a branch point of the main wiring. Thus, a ringing of a waveform of a signal received by a receiving circuit can be suppressed irrespective of a wiring length of the branch wiring.
Abstract:
A memory module comprises a PCB and a safety detachable assembly. The PCB has a terminal portion. The safety detachable assembly includes a metal strap connected to the PCB and is disposed on the terminal portion. The metal straps can provide force for the memory module to be detached from a memory slot, and prevent electrostatic from transmitting to the PCB such that normal operations of the PCB maybe affected.
Abstract:
An oblong sized printed circuit board (1) comprises light emitting diode circuitry (2, 3). Parts of the printed circuit board (1) are flexible in at least one direction, to improve a manufacturing efficiency. Preferably, the printed circuit board (1) can make curves in length and width directions and does not require holes for screws. The light emitting diode circuitry (2, 3) may comprise light emitting diode circuits (2) with light emitting diodes and other circuitry (3) such as a driver for driving light emitting diode circuits (2) individually for providing ambient light for a display (5). A device (100) comprising the printed circuit board (1) may further comprise the display (5). Such a device (100) is for example a television receiver/display device/screen device. The printed circuit board (1) may be attached to structures (61, 62) moveable by hand/machine for directing the ambient light. The device (100) may be a roll (101) for rolling up the printed circuit board (1).
Abstract:
A memory module has an array of connections. The array of connections is arranged in rows and columns such that there are first and second outer columns. Connections in the first and second outer columns can be interchanged to optimize double-side module placement on a substrate. Other embodiments are also disclosed and claimed.
Abstract:
According to one embodiment, a storage device includes a housing, a circuit board, and a module. The circuit board is located in the housing, and includes a first surface and a second surface located opposite the first surface. The module is provided on at least one of the first surface and the second surface of the circuit board. The circuit board is provided with a first notch and a connection portion to be connected to the housing at the periphery. The first notch is provided with a second notch extending toward an area between the connection portion and a module fixation area where the module is fixed on the circuit board.