Abstract:
A system for determining an analyte concentration in a fluid sample (e.g., glucose) comprises a light source, a detector, and a central processing unit. The detector is adapted to receive spectral information corresponding to light returned from the fluid sample being analyzed and to convert the received spectral information into an electrical signal indicative of the received spectral information. The central processing unit is adapted to compare the electrical signal to an algorithm built upon correlation with the analyte in body fluid. The algorithm is adapted to convert the received spectral information into the analyte concentration in body fluid. Spectral information is delivered from the central processing unit to the light source and used to vary the intensity and timing of the light to improve the accuracy of conversion into analyte concentration.
Abstract:
Device for controlling light radiation, which is excited in a specimen and/or which is backscattered and/or reflected and which contains one or more wavelengths, at a plurality of light outlets, wherein a separation of the light radiation into differently polarized components is carried out; and the components of the excitation radiation and/or detection radiation are affected in their polarization by means of a preferably birefringent, preferably acousto-optic or electro-optic medium, which changes the ordinary and extraordinary refractive index.
Abstract:
The development of a multiple-channel dual phase lock-in optical spectrometer (LIOS) is presented, which enables parallel phase-sensitive detection at the output of an optical spectrometer. The light intensity from a spectrally broad source is modulated at the reference frequency, and focused into a high-resolution imaging spectrometer. The height at which the light enters the spectrometer is controlled by an acousto-optic deflector, and the height information is preserved at the output focal plane. A two-dimensional InGaAs focal plane array collects light that has been dispersed in wavelength along the horizontal direction, and in time along the vertical direction. The data is demodulated using a high performance computer-based digital signal processor. This parallel approach greatly enhances (by more than 100×) the speed at which spectrally resolved lock-in data can be acquired.
Abstract:
A light source estimating device includes: a distribution holding section holding a spectral energy distribution of a specific light source as a specular reflection component; a set generating section generating a set determined by the specular reflection component and pixel data of the input image in a predetermined space, with respect to each pixel data of the input image; a detecting section detecting, with respect to each pixel data of the input image, another pixel data neighboring the pixel data and included in the set; and a determining section determining whether or not the specific light source corresponds to the light source used during capture, by setting a likelihood that the specific light source corresponds to the light source used during capture high if the other pixel data exists, and setting a likelihood that the specific light source corresponds to the light source used during capture low if the other pixel data does not exist.
Abstract:
An optical spectrum analyzer includes an optical section 130 for executing light dispersion into a spectrum and wavelength sweep for input measured light, converting the measured light into an electric signal, and outputting the electric signal, a control section 101 for controlling the wavelength sweep of the optical section and outputting a sampling clock of a period shifting from a cycle period of the measured light for each wavelength of the wavelength sweep, and a measurement section 140 for executing sequential sampling of the electric signal from the optical section for each sampling clock.
Abstract:
A target-seeking-and-tracking system featuring hyperspectral sensing performed by a tunable filter and an infrared focal plane array is programmable to collect and process several hyperspectral bands of infrared radiation emanating from a target scenery. The programming is done by tuning the filter from time to time to collect several hyperspectral bands containing image data corresponding to several objects of interest in the scenery. The image data is further processed in the target recognition unit to identify the objects and aid in the selection and tracking of a particular target object for the ultimate goal of accurate destruction of the object. The programmability of hyperspectral sensing provides a degree of countermeasures immunity by allowing several bands to be combined to achieve the best signal-to-clutter ratio.
Abstract:
A portable acousto-optical (AO) spectrometer system comprised of at least one AO crystal cell device specially designed for cancellation of side-lobe noise at a desired tuned wavelength of operation. Each AO crystal cell device has a transducer attached and forms an AO tunable filter (AOTF) and forms part of a photo-head assembly. The system can include an optical fiber link between the AO spectrometer photo-head assembly and additional features such as an optical alignment coupling attachment that couple an excitation source such as a laser that operates in either pulse or continuous mode, a probing fiber that provides a hand-held member that can emit a source radiation and in turn observe radiation reflected from an observed sample. There are two embodiment of the AO crystal cell device. Either embodiment of the AO crystal cell design can be used in the system, providing a vibration-insensitive AO spectrometer instrument having high sensitivity, accuracy and resolution capabilities. The types of spectroscopic measurements that can be performed using the invention include fluorescence, Raman, absorption and emission.
Abstract:
An integrated system including one or more light sources, at least one processor, an optical lens, a two-dimensional tunable filter, one or more two-dimensional array of detection elements and instructions and a method using the integrated system. The system includes a plurality of modes: a Raman mode, an absorption mode, a luminescence mode, a crossed polarization mode, a crossed polarization absorption mode, bright field transmission or reflectance modes and a birefringence mode. The system includes instructions, executable by Sequential outputs from the two-dimensional array of detection elements is combined to generate a chemical image of the sample, wherein each of the sequential outputs from the first two-dimensional array of detection elements corresponds to spatially accurate wavelength-resolved images. The system is also used to detect dynamic changes in a sample over time by monitoring the sample using one or more of the modes.
Abstract:
An efficient and versatile spectrometric sensor can be configured with an acousto-optic tunable filter. With this diverse spectral filter, the central wavelength and bandwidth of the filter can be quickly tuned to the desired wavelength. A sensor, for measuring at least selected component in a composition, can include: (a) a broadband light source, (b) an acousto-optic tunable filter (AOTF), (c) means for generating a beam of light from the light source and directing the beam of light at the AOTF wherein the AOTF is tuned to pass detection light having a desired wavelength range to detect the presence of the at least one component in the composition, (d) means for directing the detection light of known wavelength to the composition, (e) detection means for receiving light that emerges from the composition, and (f) a program structure that is coupled to the AOTF, the program structure capable of providing the AOTF with at least one desired wavelength range that is characteristic of the least one component in the composition. In addition, the device can be configured so that the AOTF is on the detection side of the sensor. The sensors can be used to measure the thickness of optically transparent films.