Abstract:
A printed circuit connection board having equally spaced, parallel contact strips on each side extending from the same edge of the board and including two rows of holes in the board which are parallel and extend transversely to said strips, the strips on one side of the board leading to the row holes of nearer said edge of the board and the strips on the other side of the board leading to the holes of the other row and passing between holes of the first named row. Connections between the board and an insertable male conductor plug, separated by an insulating bar, are ensured by metal rods which are relatively short brads in the case of soldered connections between board and plug and relatively long pins in the case of wrapped connections between the same board and plug.
Abstract:
A panel board mounting and interconnection system for electronic logic circuitry. The system includes a panel board having arrays of wire wrapping pins projecting from one side, the other side of the board being adapted to receive integrated circuit modules and other electronic components for interconnection through leads connected to the wire wrapping pins. Selected pins within a single array are interconnected by means of a printed circuit substrate mounted to the pins parallel to the panel board, the printed circuit including passive elements such as resistors or capacitors or both.
Abstract:
The method of manufacturing the integrated package includes, but is not limited to, the steps of: fabricating a plurality of identical strip transmission line printed circuit board segments, which are to be used to form a plurality, preferably two, of printed circuit boards, with each board to be a layer in and of the multi-layered integrated package; joining the segments, which collectively constitute and define each circuit board layer, in coplanar relationship, to form the respective circuit boards, drilling, and plating with an electrically conductive material, a plurality of signal path holes in and through each segment of each circuit board (i.e., each layer); inserting one end of a different two-ended electrically conductive wire into each plated signal path hole in the first circuit board layer, and soldering that end in place to its respective plated signal path hole, thereby providing electrical contact by and between each wire and its respective plated hole in the first layer; inserting the other end of each wire in a different plated signal path hole in the second circuit board layer, and soldering that end in place to its respective plated signal path hole, thereby providing electrical contact by and between each end of each wire and the two plated signal path holes to which each wire is soldered, and also thereby providing electrical conductivity between, and from and to, the first and the second layers of printed circuit boards; and, bonding the second layer to the first layer in stacked relationship. By cascading the interconnection (i.e., adding a third layer to the two-layered package, and electrically interconnecting the third layer to the second layer), an integrated package of as many layers as desired or as needed may be formed, without having to penetrate more than any two adjacent layers of circuit boards at any one time. The method may be significantly varied, by performing additional steps to drill, plate and align one or more grounded holes in the circuit board layers, to improve the electrical performance of the transition.
Abstract:
An electrical terminal structure is disclosed which is provided with a flow deposited quantity or band of solder adhered to a selected portion of the terminal and limited from spreading over the surface of the terminal by the presence of a soldernonwettable material adjacent to but not necessarily touching the terminal. A method of mounting the banded electrical terminals in plated apertures provided in a substrate is also disclosed, wherein the solder bands are applied to the terminals according to the above mentioned application technique. A technique of flattening the solder bands, and the resulting terminal structures having flattened solder bands adhered thereto are also disclosed. Flattening of the solder bands facilitates insertion of the banded terminals into the plated apertures by changing the shape of the solder bands and by reducing their structural integrity though the creation of numerous hairline fractures.
Abstract:
A circuit board employs solder pads plated onto the reverse side of an insulative board in an orthogonal array and connected to aligned conductive areas on the obverse side by plated-through holes. Wire guides including upstanding fingers mount on the reverse side of the board with conductive pins from electrical components extending through the holes in the board from the obverse side to the reverse side. Insulated wire is threaded around the pins of the electrical components and guide in accordance with a predetermined pattern of component interconnections. For interconnections between points on the board, wire is threaded substantially orthogonally. Where wire is to be severed, it is threaded angularly relative to the orthogonal array. After wire threading, the wire is selectively soldered to contact areas while evaporating locally the insulation thereon and component pins are soldered in platedthrough holes. All angularly arrayed segments of the wire are cut and loose portions removed leaving only wire segments which form desired interconnections.
Abstract:
Heat is conducted from electronic packages or modules by extending the leads of the packages or modules through a mother board, to which the leads are electrically connected, into thermal contact with a thermal sink, and particularly, into an electrically insulating and thermally conducting member (such as a beryllia or alumina block) in thermal contact with the thermal sink.
Abstract:
The electrical connecting element consists of a flanged sleeve which is pushed over the terminal pins, establishing the electrical contact between a terminal pin and a printed circuit. The element is applied in a form- and force-locking manner, and is protected against external influences, such as dust and vibration, by means of a shrink-on ring.