Abstract:
A system including an electrostatic tool including a handle, a first trigger configured to move between a first trigger position and a second trigger position, wherein the electrostatic tool is configured to be inactive when the first trigger is in the first trigger position and to spray a coating material when the first trigger is in the second trigger position, an electrostatic activation system configured to activate and deactivate electrical charging of the coating material, and wherein the first trigger and the electrostatics activation system may be separately and simultaneously engaged with a single hand.
Abstract:
A feed tube is provided in a rotational shaft that is rotated by a motor. The feed tube includes a connecting member that includes a paint supplying port, a tube body including a base end connected to the connecting member and a front end that extends in the rotational shaft toward a rotary atomizing head, a positioning member provided in the front end of the tube body and including a tube positioning hole, and a paint tube including a base end connected to the paint supplying port of the connecting member and a front end inserted through the tube positioning hole of the positioning member. The paint tube is formed of a tubular body in an inside of which a paint passage is formed by using a resin material having water repellency.
Abstract:
An apparatus for mixing a first material with a second material and then spraying the resultant material onto a surface. The second material is mixed with a gas before then being introduced to the first material. A static charge is created and deposited onto the resultant material to help align the resultant material particles.
Abstract:
An electrostatic sprayer for spraying a liquid includes a nozzle formed from a a nozzle body that has an inlet for receiving a liquid and a liquid tip having an outlet for ejection of the liquid to form a liquid spray. The nozzle also includes an electrode disposed around the outlet of the liquid tip for charging the liquid and a dielectric shroud disposed around at least a portion of the liquid tip to prevent leakage currents from reducing a potential of the electric field between the liquid and the electrode, which would otherwise reduce the effectiveness of the sprayer. A conductor that couples the electrode to a power supply may pass through a hole extending through the shroud. The shroud may include one or more vents to permit air and liquid to pass through the dielectric shroud to reduce accumulation of liquid.
Abstract:
An apparatus for mixing a first material with a second material and then spraying the resultant material onto a surface. The second material is mixed with a gas before the being introduced to the first material. A static charge is created and deposited onto the resultant material to help align the resultant material particles.
Abstract:
A method and apparatus for coating a substrate using one or more liquid starting materials. The substrate is coated by atomizing one or more liquid starting materials into droplets and vaporizing the droplets in a deposition chamber for before the starting materials react on the surface of the substrate. The droplets are guided towards the substrate with electrical forces before the droplets are vaporized.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a tube with an ingress opening to receive a liquid, and an egress opening to release the liquid, a conductor positioned in a conduit of the tube, the conductor and the conduit having dimensions to cause a surface tension of the liquid to prevent a constant flow of the liquid from the egress opening, and a power supply coupled to the conductor to apply a charge to the liquid to overcome the surface tension and form at the egress opening a single jet stream of the liquid applicable on a substrate to create a pattern. The single jet stream can be controllable in part by a viscosity of the liquid. Additional embodiments are disclosed.
Abstract:
An electrostatic spraying assembly including a housing and a plurality of elongated electrode elements supported within the housing each defining a respective fluid passageway. An electrode header connectable to a high voltage source is supported within the housing in spaced relation to the electrode elements for charging the electrodes to an electrical potential by induction, and in turn, charging liquid directed through the passageways. The electrode header and a resilient valve element supported thereon are movable between retracted and closing positions for controlling the flow of fluid through the electrode passageways for discharge into an electrical field generated by an induction element supported in spaced relation to the discharge ends of the electrode elements.
Abstract:
A thermal coating includes a substrate, a first coating layer, and a second coating layer. The substrate is selected from the group consisting of superalloys and ceramic matrix composites. The first coating layer comprises an alumina powder, a silica binder, and at least one additive selected from either a first group or a second group. The second coating layer comprises at least one of zinc titanate or cerium oxide. A method for applying a thermal coating system includes spraying a bond coat mixture onto a substrate using a liquid electrostatic sprayer. The bond coat mixture comprises an alumina powder, a silica binder, and at least one additive selected from either a first group or a second group. The method further includes applying a top coat mixture onto the bond coat mixture, wherein the top coat mixture comprises at least one of zinc titanate or cerium oxide.
Abstract:
A thermal coating includes a substrate, a first coating layer, and a second coating layer. The substrate is selected from the group consisting of superalloys and ceramic matrix composites. The first coating layer comprises an alumina powder, a silica binder, and at least one additive selected from either a first group or a second group. The second coating layer comprises at least one of zinc titanate or cerium oxide. A method for applying a thermal coating system includes spraying a bond coat mixture onto a substrate using a liquid electrostatic sprayer. The bond coat mixture comprises an alumina powder, a silica binder, and at least one additive selected from either a first group or a second group. The method further includes applying a top coat mixture onto the bond coat mixture, wherein the top coat mixture comprises at least one of zinc titanate or cerium oxide.