Abstract:
Various embodiments provide for an integrated temperature sensor and microphone package where the temperature sensor is located in, over, or near an acoustic port associated with the microphone. This placement of the temperature sensor near the acoustic port enables the temperature sensor to more accurately determine the ambient air temperature and reduces heat island interference cause by heat associated with the integrated circuit. In an embodiment, the temperature sensor can be a thermocouple formed over a substrate, with the temperature sensing portion of the thermocouple formed over the acoustic port. In another embodiment, the temperature sensor can be formed on an application specific integrated circuit that extends into or over the acoustic port. In another embodiment, a thermally conductive channel in a substrate can be placed near the acoustic port to enable the temperature sensor to determine the ambient temperature via the channel.
Abstract:
Embodiments show a method for fabricating a cavity structure, a semiconductor structure, a cavity structure for a semiconductor device and a semiconductor microphone fabricated by the same. In some embodiments the method for fabricating a cavity structure comprises providing a first layer, depositing a carbon layer on the first layer, covering at least partially the carbon layer with a second layer to define the cavity structure, removing by means of dry etching the carbon layer between the first and second layer so that the cavity structure is formed.
Abstract:
Methods and systems for a reversible top/bottom MEMS package may comprise a base substrate comprising metal traces, an opening through the base substrate, a die coupled to a first surface of the substrate and positioned over the opening, a frame member coupled to the first surface of the substrate wherein the die is positioned interior of the frame member, a cover substrate coupled to the frame member, and conductive plating on the frame member that electrically couples the base substrate to the cover substrate, wherein the conductive plating is exposed. The conductive plating may couple a ground plane in the base substrate to a ground plane in the cover substrate. The conductive plating may be exposed at an outer surface of the frame member and/or at an inner perimeter of the frame member. Conductive vias within the frame member may be coupled to the metal traces in the base substrate.
Abstract:
A method for the manufacture of a package encasing a Micro-Electro-Mechanical Systems (MEMS) device provides a cover having a lid and sidewalls with a port extending through the lid. A first base component is bonded to the sidewalls defining an internal cavity. This first base component further includes an aperture extending therethrough. The MEMS device is inserted through the aperture and bonded to the lid with the MEMS device at least partially overlapping the port. Assembly is completed by bonding a second base component to the first base component to seal the aperture. The package so formed has a cover with a lid, sidewalls and a port extending through the lid. A MEMS device is bonded to the lid and electrically interconnected to electrically conductive features disposed on the first base component. A second base component is bonded to the first base component spanning the aperture.
Abstract:
A surface mountable microphone package includes a first microphone and a second microphone. Furthermore, the surface mountable microphone package includes a first opening for the first microphone and a second opening for the second microphone. The first opening and the second opening are arranged on opposite sides of the surface mountable microphone package.
Abstract:
The invention provides a MEMS microphone packaging structure for reducing the packaging structure volume, lowering manufacturing cost and improving impact resistance. The packaging structure has a large back cavity formed by a recess of a controlling chip and a deep hole of a MEMS microphone chip. The controlling chip is disposed on the MEMS microphone chip for protecting the MEMS microphone chip. A plastic molding process can be applied on the packaging structure. A plurality of pads on a base of the packaging structure are protected by sealant or primer for protection against corrosion under atmospheric condition. In conclusion, the invention has advantages of small volume and thinner thickness without downgrading the performance, and the manufacturing cost can be lowered.
Abstract:
A MEMS device includes a dual membrane, an electrode, and an interconnecting structure. The dual membrane has a top membrane and a bottom membrane. The bottom membrane is positioned between the top membrane and the electrode and the interconnecting structure defines a spacing between the top membrane and the bottom membrane.
Abstract:
A stacked MEMS microphone packaging method includes the steps of: providing a substrate having a conducting part and a through hole; affixing a retaining wall to the substrate and forming a conducting circuit in electrical connection with the conducting part; mounting a processor chip and a sensor chip on the substrate to have the sensor chip be disposed at a top side of the through hole; providing a carrier board having a first solder pad and a second solder pad and fixedly mounting the carrier board at the retaining wall and electrically coupled to the first solder pad and the second solder pad. Thus, the method can make a flip architecture MEMS microphone, reducing the steps of the packaging process and lowering the degree of difficulty of the manufacturing process and the manufacturing costs.
Abstract:
A microelectromechanical sensing structure for a capacitive acoustic transducer, including: a semiconductor substrate; a rigid electrode; and a membrane set between the substrate and the rigid electrode, the membrane having a first surface and a second surface, which are in fluid communication, respectively, with a first chamber and a second chamber, respectively, the first chamber being delimited at least in part by a first wall portion and a second wall portion formed at least in part by the substrate, the second chamber being delimited at least in part by the rigid electrode, the membrane being moreover designed to undergo deformation following upon incidence of pressure waves and facing the rigid electrode so as to form a sensing capacitor having a capacitance that varies as a function of the deformation of the membrane. The structure moreover includes a beam, which is connected to the first and second wall portions and is designed to limit the oscillations of the membrane.
Abstract:
A method of making a system-in-package device, and a system-in-package device is disclosed. In the method, at least one first species die with predetermined dimensions, at least one second species die with predetermined dimensions, and at least one further component of the system-in-device is included in the system-in package device. At least one of the first and second species dies is selected for redimensioning, and material is added to at least one side of the selected die such that the added material and the selected die form a redimensioned die structure. A connecting layer is formed on the redimensioned die structure. The redimensioned die structure is dimensioned to allow mounting of the non-selected die and the at least one further component into contact with the redimensioned die structure via the connecting layer.