Abstract:
A radiometrically stable, spectrally tunable, solid-state source combines the radiometric outputs of individually controlled, narrow bandwidth, solid-state sources (e.g., LEDs) with different spectral distributions in an integrating sphere so as to approximate any desired spectral distribution. By using a sufficient number of independent solid-state source channels, the source can be tuned to approximate the spectral distribution of any desired source distribution. A stable reference spectroradiometer, integrated into the solid-state light source, measures the spectral radiance or irradiance and is used to adjust the output of the individual channels of the individually controlled sources.
Abstract:
The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.
Abstract:
A modular dual-beam source, sample compartment and beam-combining system are provided when used with a monochromator and detector to form a spectrophotometer consisting of: (a) a source module where two ellipsoidal mirrors each produce an image of the light source, and (b) a reflecting sample-compartment module, wherein each side has two plane-mirrors, of the four plane mirrors, three are reference and one is the sample, or (c) a transmission sample-compartment module, wherein each side has two plane-mirrors, and a sample is placed between one pair of plane-mirrors, and (d) a beam-combining module wherein the source images are imaged by a second pair of ellipsoidal mirrors on a reflective chopper that combines the images at a single location that is imaged, external to the module, by another mirror, each module being kinematically located with respect to each other so the system remains optically aligned as modules are interchanged.
Abstract:
A multifunctional infrared spectrometer system has an interferometer which receives the infrared beam from a source and provides a modulated output beam on beam paths to multiple spatially separated infrared detectors. A multi-position mirror element mounted at a junction position receives the beam on a main beam path and directs it on branch beam paths to sample positions, with the beam then being directed on the branch beam path to one of the detectors. One of the branch beam paths may include a sample holder at the sample position which can index between a position at which a sample is analyzed, to a reference material position, to a pass-through position for calibration purposes. The multi-position mirror element may also be indexed to direct the beam on a branch path to a fiber optic cable which has a probe at the end of it which may be inserted in a sample fluid or powder to be analyzed, with the reflected light from the probe being directed back on an optical fiber cable to a detector at the spectrometer. The multi-position mirror element may be moved to a position at which the beam is directed on a beam path to and through an integrating sphere to a solid sample, with the reflected light from the sample being directed by the surfaces of the integrating sphere to a detector. A detector may be mounted to detect the light transmitted through the sample to obtain measurements of both reflected and transmitted infrared light at the sample.
Abstract:
The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.
Abstract:
A multifunctional infrared spectrometer system has an interferometer which receives the infrared beam from a source and provides a modulated output beam on beam paths to multiple spatially separated infrared detectors. A multi-position mirror element mounted at a junction position receives the beam on a main beam path and directs it on branch beam paths to sample positions, with the beam then being directed on the branch beam path to one of the detectors. One of the branch beam paths may include a sample holder at the sample position which can index between a position at which a sample is analyzed, to a reference material position, to a pass-through position for calibration purposes. The multi-position mirror element may also be indexed to direct the beam on a branch path to a fiber optic cable which has a probe at the end of it which may be inserted in a sample fluid or powder to be analyzed, with the reflected light from the probe being directed back on an optical fiber cable to a detector at the spectrometer. The multi-position mirror element may be moved to a position at which the beam is directed on a beam path to and through an integrating sphere to a solid sample, with the reflected light from the sample being directed by the surfaces of the integrating sphere to a detector. A detector may be mounted to detect the light transmitted through the sample to obtain measurements of both reflected and transmitted infrared light at the sample.
Abstract:
The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.
Abstract:
An apparatus for monitoring the light energy power level of a beam of light, includes beamsplitters on the axis of the light beam for directing portions of the light beam in first and second paths respectively orthogonal to the axis while transmitting the remaining portion of the light beam therethrough. First and second photodetectors having similar spectral responsivity intercept the first and second light beam portions respectively, and detect and signal the light energy power level of the respective first and second light beam portions. Analysis circuitry coupled to the first and second photodetectors and responsive to the output signals therefrom to calculate the total light energy power level of the light beam. The apparatus resolves linearly polarized light into two orthogonal components while permitting most of the light to exit. This exit beam can be analyzed in terms of the incident beam or monitored for measurement or control purposes.
Abstract:
There is provided an optical characteristic measurement system that can be set up in a relatively short time and can increase a detection sensitivity. The optical characteristic measurement system includes a first measurement apparatus. The first measurement apparatus includes: a first detection element arranged in a housing; a first cooling unit at least partially joined to the first detection element that cools the detection element; and a suppression mechanism that suppresses temperature variations occurring around the detection element in the housing.