Abstract:
A resonator includes a piezoelectric plate and interdigitated electrode(s). The interdigitated electrode includes a plurality of conductive strips disposed over a top surface of the piezoelectric plate. A two-dimensional mode of mechanical vibration is excited in a cross sectional plane of the piezoelectric plate in response to an alternating voltage applied through the interdigitated electrode. The two-dimensional mode of mechanical vibration is a cross-sectional Lamé mode resonance (CLMR) or a degenerate cross-sectional Lamé mode resonance (dCLMR).
Abstract:
A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
Abstract:
A target component calibration device includes a mixing coefficient calculating section that calculates mixing coefficients of target components regarding a test object based on observational data regarding the test object and calibration data, and a target component content calculating section that calculates the content of target components based on the mixing coefficients calculated by the mixing coefficient calculating section and a simple regression equation representing the relationship between the content and the mixing coefficients corresponding to the target components. The target component content calculating section adjusts at least one of two constants of the simple regression equation depending on a measurement condition when the observational data is obtained.
Abstract:
A system and method for in-field near infrared spectroscopy (NIRS) analysis of rubber and resin concentrations a guayule plant is provided. The system includes a wagon or other vehicle with the NIRS device mounted on the wagon. A computer or processor electrically coupled to the NIRS device is also housed within an area or extension of the wagon. During measurement of a guayule plant in the field, a guayule plant covering is placed over the guayule plant and a light shield coupled to the NIRS device is inserted into an opening on the guayule plant covering. The NIRS device is configured to perform a reading of the guayule plant within the plant covering and communicate results of the reading to the computer. A calibration equation is then preferably applied to the guayule plant readings to produce the rubber and resin concentrations of the guayule plant.
Abstract:
Various implementations of optical computing devices are described herein which include a “tuning fork” probe, “spark plug” probe, “grooved tubular” and “modular” type implementation.
Abstract:
A measurement system includes a light source generating an output optical beam using semiconductor sources generating an input beam, optical amplifiers outputting an intermediate beam, and optical fibers receiving the intermediate beam and forming a first optical beam. A nonlinear element broadens the output beam spectrum to at least 10 nm, the spectrum comprising a near-infrared wavelength of 700-2500 nm. A measurement apparatus receives the output optical beam and delivers to a sample an analysis output beam. A receiver receives and processes the analysis output beam reflected or transmitted from the sample.
Abstract:
A biological optical measurement instrument includes a single temperature sensor that detects a radiation temperature from a plurality of light emitting elements that emit light of a predetermined wavelength, and an absorption coefficient correcting unit that corrects an absorption coefficient value of a notable substance inside the object on the basis of the radiation temperature detected by the temperature sensor, referring to data indicating a correspondence relationship between a temperature obtained in advance for each emitted light of the plurality of light emitting elements and an absorption coefficient value that varies according to the temperature.
Abstract:
A method of referencing an imaged object includes, among other things, obtaining a series of images, observing key characteristics of the object in each of the series of images, associating the observed key characteristics with the object; and assigning a unique identifier to the object based upon the associated key characteristics. The series of images includes spectral and spatial imagery. Some of the key characteristics are in the spectral imagery and some of the key characteristics are in the spatial imagery.
Abstract:
A spectroscopy system includes an array of quantum cascade lasers (QCLs) that emits an array of non-coincident laser beams. A lens array coupled to the QCL array substantially collimates the laser beams, which propagate along parallel optical axes towards a sample. The beams remain substantially collimated over the lens array's working distance, but may diverge when propagating over longer distances. The collimated, parallel beams may be directed to/through the sample, which may be within a sample cell, flow cell, multipass spectroscopic absorption cell, or other suitable holder. Alternatively, the beams may be focused to a point on, near, or within the target using a telescope or other suitable optical element(s). When focused, however, the beams remain non-coincident; they simply intersect at the focal point. The target transmits, reflects, and/or scatters this incident light to a detector, which transduces the detected radiation into an electrical signal representative of the target's absorption or emission spectrum.
Abstract:
An optical system having an optical sensor with an ultra-short FP cavity, and a low-resolution optical interrogation system coupled to the optical sensor and operational to send light signals and receive light signals to and from the optical sensor is disclosed. The optical system may operate in a wavelength range including the visible and near-infrared range. Methods of interrogating optical sensors are provided, as are numerous other aspects.