Abstract:
Apparatus and methodologies are provided to selectively activate a liquid usage option in a washing apparatus based on the color of the liquid. Light from different light sources is passed through a liquid to be tested and the intensity of the light passing through the liquid is measured. The measurement is adjust based on a measurement of the turbidity of the liquid and the measurement compared to a reference value derived from measurements of a clear liquid. A decision is made based on the adjust measured color of the liquid regarding retention of the liquid for further use in the washing apparatus. The liquid tested may correspond to grey water from a previous wash cycle.
Abstract:
In one example, the article includes instructions for illuminating a color patch with a first illumination intensity, capturing a first color measurement of the color patch, adjusting the first illumination intensity to a second illumination intensity based on the first color measurement, illuminating the color patch with the second illumination intensity, and capturing a second color measurement. In one example, the system discloses a light source illuminates a color patch with a first illumination intensity, a color measurement module captures a first color measurement of the color patch, wherein the color measurement module causes the light source to adjust the first illumination intensity to a second illumination intensity based on the first color measurement, and wherein the color measurement module captures a second color measurement of the color patch. In one example, the method discloses blocks for effecting the article and system.
Abstract:
Provided is a device for determining the surface topology and associated color of a structure, such as a teeth segment, including a scanner for providing depth data for points along a two-dimensional array substantially orthogonal to the depth direction, and an image acquisition means for providing color data for each of the points of the array, while the spatial disposition of the device with respect to the structure is maintained substantially unchanged. A processor combines the color data and depth data for each point in the array, thereby providing a three-dimensional color virtual model of the surface of the structure. A corresponding method for determining the surface topology and associated color of a structure is also provided.
Abstract:
A method and apparatus for generating a color mapping for a dental object. The method includes generating a transformation matrix according to a set of spectral reflectance data for a statistically valid sampling of teeth. Illumination is directed toward the dental object over at least a first, a second, and a third wavelength band, one wavelength band at a time. For each of a plurality of pixels in an imaging array, an image data value is obtained, corresponding to each of the at least first, second, and third wavelength bands. The transformation matrix is applied to form the color mapping by generating a set of visual color values for each of the plurality of pixels according to the obtained image data values and according to image data values obtained from a reference object at the at least first, second, and third wavelength bands. The color mapping can be stored in an electronic memory.
Abstract:
The invention relates to an illumination device (1) with a number of light emitters, for example LEDs (L1, L2, L3, L4) of individual emission spectra. Sensor units (D1, D2, D3, D4) can produce a vector of measurement signals (S1, S2, S3, S4) that represent the light output of a single active light emitter. Based on a linear relation obtained during a calibration procedure, a characteristic value of the light output of that light emitter (L1, L2, L3, L4) is then calculated from the measurement vector, wherein said characteristic value is based on the coefficients of a decomposition of the individual emission spectrum into basis functions.
Abstract:
Spectroscopic devices and techniques for determining the presence or absence of an analyte of interest or the presence or absence of desired characteristics of an object are provided. In an embodiment, a portable device or attachment for a smart phone or comparable device includes a light source and a detector. The detector detects light after reflection from a target surface and, based upon attributes in the detected light absent from the emitted light such as covariances among different wavelengths, determines the presence or absence of the analyte of interest.
Abstract:
The present disclosure includes a number of method, medium, and apparatus claims utilized for color sensor performance. One method includes determining performance of a color sensor, which can be performed by measuring a color parameter intensity and reflectance spectral power distribution of a particular type of print medium with a color sensing utility of a print apparatus. The method also can include detecting a magnitude of a difference between the measured color parameter intensity and reflectance spectral power distribution of the particular type of print medium and a predetermined intensity and reflectance spectral power distribution of the color parameter of the particular type of print medium, where the predetermined intensity and reflectance spectral power distribution is stored in memory.
Abstract:
A light fixture, using one or more solid state light emitting elements utilizes a diffusely reflect chamber to provide a virtual source of uniform output light, at an aperture or at a downstream optical processing element of the system. Systems disclosed herein also include a detector, which detects electromagnetic energy from the area intended to be illuminated by the system, of a wavelength absent from a spectrum of the combined light system output. A system controller is responsive to the signal from the detector. The controller typically may control one or more aspects of operation of the solid state light emitter(s), such as system ON-OFF state or system output intensity or color. Examples are also discussed that use the detection signal for other purposes, e.g. to capture data that may be carried on electromagnetic energy of the wavelength sensed by the detector.
Abstract:
A device includes a housing; a color sensor within a first end of the housing, the color sensor configured to sense a color of a sample when the color sensor is placed proximate the sample; and a display within the housing, the display configured to display the color of the sample sensed by the color sensor.
Abstract:
A method measures chromaticity values using a colorimeter to solve the drawbacks of conventional technologies, such as an inaccurate illuminant, the filter of color-matching function being difficult to be deposited and manufactured within a filter mod colorimeter, and using an expensive spectrometer within a spectrum mode colorimeter. The spectrometer and the filter of color-matching function is not needed, and an accurate chromaticity value of an object by using a multi-band illuminant illuminating the object and a power meter. Further, the multi-band illuminant can adjust the illumination condition of a standard illuminator under different color temperatures, and the chromaticity values of the object can be measured under different color temperatures. The accuracy of the measured chromaticity values is up to the level of the spectrum mode colorimeter, and the price is less than the spectrum mode colorimeter.