Abstract:
The present invention relates to a portable digital reader for reading an analysis target chip including a plurality of test areas. The reader comprises: a light emitting section having light emitting elements for radiating light; an integral optical splitter for uniformly distributing the light from the light emitting section to each test area of the analysis target chip; a light receiving section for receiving light reflected from each test area so as to convert the same into electric signals; and a measuring section for measuring concentration according to the electric signals obtained from the light receiving section. Therefore, it is possible to prevent the generation of errors in signal measurement due to optical distribution failure by assembling branch sections of the optical splitter under the control of the number of the branch sections according to the number of test items in a test strip.
Abstract:
An apparatus (22) for verifying a final product being packaged in a final container (28), includes an optical spectroscopy analysis unit including a device for holding the final container (28), and a probe, characterized in that the holding device includes a clamping system including a reference platform (32) for supporting and positioning the final container (28) in a determined position with respect to the probe (P) and a clamping bar (36), the holding device being adapted to receive any form of final containers such as syringes, vials or Intravenous bags. In addition, a software for managing and characterizing optical signals from a drug product to confirm that the drug was correctly prepared prior to administration is described.
Abstract:
Disclosed herein are methods and devices for detection of hospital acquired infections. Disclosed methods may be utilized for continuous in vivo monitoring of a potential infection site or for periodic in vitro monitoring of tissue or fluid from a patient and may be utilized to alert patients and/or health care providers to the presence of a pathogen at an early stage of infection. Disclosed methods utilize fluorophore pairs that optically interact with one another according to Forster resonance energy transfer (FRET) or bioluminescence resonance energy transfer (BRET) mechanism. One member of the pair or a cofactor that interacts with an enzyme to form a member of the pair may be tethered to a device by a substrate that is specific for an enzyme expressed by a targeted pathogen. Upon interaction of the enzyme with the substrate, an optically detectable signal may be altered or initiated, detection of which may then provide information as to the existence of the pathogen at the site.
Abstract:
In one embodiment, the invention is a spectrophotometer with a modular 45/0 head. One embodiment of an apparatus for measuring a reflectance of a sample includes a plurality of light emitting diodes for emitting light, a reflective housing positioned above the plurality of light emitting diodes, where the reflective housing is a dome having a plurality of apertures formed around its perimeter, a sample channel for capturing a first portion of the light, where the first portion of the light interacts with the sample, and a reference channel for capturing a second portion of the light, where the second portion of the light is independent of the sample.
Abstract:
A device for analyzing materials by plasma spectroscopy is of the portable and independent type, comprising a housing (10) containing a laser generator (18) that emits laser pulses that are focused on the surface of a material to be analyzed by means of a parabolic mirror (32) that is movable in translation inside the housing in order to perform a series of spot measurements along a scan line on the surface of the material to be analyzed and in order to take a measurement from a calibration sample (50) mounted in the measurement endpiece (22) of the housing (10).
Abstract:
A method and a machine for balancing vehicle wheels with weights (18), the method comprising stages of: using a video camera (5, 6, 206) to frame a portion of a surface of a hub (101) of a wheel on which a weight (18) is to be applied, locating, in images of the hub (101) taken by the camera (5, 6, 206), at least a balancing plane (E1, E2) which is perpendicular to a rotation axis (A) of the wheel, piloting at least a pick-up device (8, 9, 209) such as to direct the at least a pick-up device (8, 9, 209) onto a point (P1, P2) of the hub (101) belonging to the balancing plane (E1, E2), detecting, by means of the pick-up device (8, 9, 209) characteristic geometric parameters of the hub (101) at the balancing plane (E1, E2), measuring an imbalance of the wheel, calculating, by means of an electronic calculator (4, 204) an entity of at least a weight (18) to be applied to the hub (101) at the balancing plane (E1, E2), and also calculating an angular position (T1, T2) of the weight (18) in the balancing plane (E1, E2).
Abstract:
A process, portable equipment and device for in vitro photometric determination of hemoglobin concentration in diluted blood. The present invention allows its use in field anemias prospection programs. The present invention has a light source (1) whose wavelength is between 500 and 550 nm, a cylindrical sample holder (3), whose diameter is between 8 and 20 mm, a photosensor (2) to perform the sample photometry and a microprocessor for automatically starting the light source, acquiring the signal obtained by the photosensor (2), performing the hemoglobin concentration calculations and displaying the results in a liquid crystal display. The device also has a sealed cylindrical bottle, which is simultaneously used as a package for the reagent and as an optical component in the process, allowing photometric reading through its walls.
Abstract:
Embodiments provide a handheld optical measuring device and method of measuring an optical property of a liquid sample. In some embodiments the optical measuring device includes a handheld controller module having an immersible sensor head and a sampling member including a sample cup and an attachment member that couples the sample cup to the handheld controller module. In some embodiments the attachment member is an elongated rigid member that is hingedly coupled to the controller module, thus providing a folding configuration for enclosing the sensor head with the sample cup during measurements, transportation, and/or storage. In some embodiments the attached sample cup provides a protective shell for the immersible sensor head during use and/or when not in use.
Abstract:
A method for analyzing a mixture includes identifying a plurality of possible components of the mixture, calculating at least one feature for at least a portion of the plurality of possible components, and calculating a probability value for at least a portion of the plurality of possible components based on the at least one feature and at least one transfer function