Abstract:
The present invention relates to a device for the detection of a fluorescent dye in a sample, comprising a radiation source means with the aid of which light for exciting the fluorescent dye to be detected can be transmitted into the sample applied to a carrier, and a detecting means for detecting fluorescent light which has been emitted by the fluorescent dye to be detected. The present invention is characterized by a hollow space having an internal high-reflectance surface, a first aperture directed towards the sample, and a second aperture located opposite the detecting means.
Abstract:
In a detector for spectrometry attached to an integrating sphere, a plurality of detection elements having different spectral sensitivity characteristics is arranged side by side in the same plane on a base, and a side cover is provided such that the detection elements receive light. Thus, the measurement light is directly irradiated to the respective detection elements. Accordingly, the detector for spectrometry has a fast response speed and is excellent in the sensitivity characteristics in a wide wavelength region in the near-infrared area.
Abstract:
A method to change the color of hair. The method includes measuring an initial reflectance spectrum of a sample of the hair and analyzing a contribution of a plurality of natural hair factors to the initial reflectance spectrum. The method also includes calculating a hair treatment based on another reflectance spectrum. A system to measure a reflectance spectrum of a sample includes an integrating sphere having a sampling port and an inner surface and a window disposed near to the sampling port. The window is configured for being placed in close contact with the sample. The system also includes a light source configured to project light onto the sample via the window and a light detector configured to analyze light reflected from the inner surface to produce the reflectance spectrum of the sample.
Abstract:
A method and apparatus for irradiating a specimen with a beam of radiation are provided. The method comprises the steps of providing an integrating sphere, a radiation source radiatively communicating with the sphere, and a specimen, the integrating sphere radiatively communicating with the specimen through an aperture in the sphere. The apparatus comprises a radiation source, an integrating sphere in radiative communication with the radiation source, and a specimen holder in radiative communication with the integrating sphere. The disclosed apparatus and method allow the irradiance of a beam of radiation impinging on the specimen to be maintained at a uniform level across the width of the beam to allow quantitative specimen evaluation.
Abstract:
A gas detecting apparatus includes a gas cell, a laser source, a light diffuser and a photodetector. The gas cell has a gas inlet hole for letting the target gas come inside and a gas discharge hole for discharging the target gas, and retains a target gas to be detected. The laser source emits coherent light into the gas cell in order to detect a concentration of the target gas. The light diffuser is disposed in the optical path of the coherent light output from the laser source to diffuse the coherent light, thereby eliminating coherence of the coherent light. The photodetector receives light diffused by the light diffuser.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.
Abstract:
A reflection characteristic of a sample is measured using an integrating sphere by: measuring an apparent reflectance of a reference sample by using integrating sphere, the reference sample having a known true reflectance under a given illumination condition; calculating coefficients for rendering a linear combination of a measured apparent reflectance of the reference sample and N-th power (N is 2 or more integer) of the measured apparent reflectance closer to the known true reflectance of the reference sample; storing calculated coefficients in a storage medium as coefficients for the given illumination condition; measuring an apparent reflectance of a desired sample by using the integrating sphere; calculating a true reflectance of the desired sample under the given illumination condition by multiplying the terms of the linear combination of an measured apparent reflectance of the desired sample and N-th power of the measured apparent reflectance of the desired sample by the coefficients stored in the storage medium, respectively.
Abstract:
The invention relates to an apparatus for measuring physiological parameters of blood conveyed within an extracorporeal circulatory system. Two light sources (1a, 1b) emit light of varying wavelength into a spherical cavity (3) that comprises a reflective inner surface (3a). Light sensor means (2) receives part of the light propagating within the cavity (3). A tube portion of the extracorporeal circulation can be inserted into a second cavity (4) such that the light (La, Lb) emitted by the light sources encounters the boundary surface between the blood and an inner wall of the tube. The light returns to the cavity (3) at least to an extent by means of reflection and/or transmission.
Abstract:
A measuring instrument for reflectometric measurements, comprising a spherical measuring chamber (1) provided with a light source (2) and with a specimen aperture (3); a measuring channel (4) which has been provided with optics (5), with a photometer (6), with an optional stop (7) and with an optional filter (8); a reference channel (14) provided with optics (15), with a photometer (16), with an optional stop (17) and with an optional filter (18); and a signal processing and calculating device (20.sub.s, 20.sub.c) for processing and comparing with each other the light intensity values observed by means of the photometers in the measuring and reference channels. As taught by the invention, the measuring instrument comprises at least one visible light light source (2.sub.s) which emits substantially light having a wavelength mainly over about 380 nm, and a UV light source (2.sub.u) which emits substantially light in the UV range having a wavelength mainly under about 380 nm, advantageously 300 to 380 nm.
Abstract:
Feedback control of a spatially distributed light source for a light integrating cavity in which the light acceptance angle of the light feedback device is expanded by means of a light diffuser at the feedback port so as to better average the localized light intensity variations on the internal surface area of the cavity caused by arc wander in the spatially distributed light source.