Abstract:
A printed circuit board (PCB) and a method for manufacturing the PCB are disclosed. A PCB includes a transparent insulating substrate, a conductive circuit layer 16, and a transparent cover layer. The conductive circuit layer is located between the transparent insulating substrate and the transparent cover layer. The conductive circuit layer includes a first Ni—W alloy pattern layer, a copper pattern layer, and a second Ni—W alloy pattern layer. The first Ni—W alloy pattern layer is adhered with the transparent adhesive layer. Bottom surfaces of the conductive pattern layer are coated by the first Ni—W alloy pattern layer. Top surfaces and side surfaces of conductive pattern layer are coated by the second Ni—W alloy pattern layer.
Abstract:
A composition for forming a silver ion diffusion-suppressing layer includes an insulating resin and a compound including: a structure selected from the group consisting of a triazole structure, a thiadiazole structure and a benzimidazole structure; a mercapto group; and at least one hydrocarbon group optionally containing a heteroatom, with the total number of carbon atoms in the hydrocarbon group or groups being 5 or more. The composition for forming a silver ion diffusion-suppressing layer allows formation of a silver ion diffusion-suppressing layer capable of suppressing silver ion migration between metal interconnects containing silver or a silver alloy to improve the reliability on the insulation between the metal interconnects.
Abstract:
The present invention relates to a method for manufacturing a printed circuit board including a flame retardant insulation layer. The printed circuit board of the present invention exhibits excellent thermal stability and excellent mechanical strength, is suitable for imprinting lithography process, provides improved reliability by reducing coefficient of thermal expansion, and has excellent adhesion between circuit patterns and an insulation layer.
Abstract:
A method for applying a protective coating to selected portions of a substrate is disclosed. The method includes applying a mask to or forming a mask on at least one portion of the substrate that is not to be covered with the protective coating. The mask may be selectively formed by applying a flowable material to the substrate. Alternatively, the mask may be formed from a preformed film. With the mask in place, the protective coating may be applied to the substrate and the mask. A portion of the protective coating that overlies the mask may be delineated from other portions of the protective coating; for example, by cutting, weakening or removing material from the protective coating at locations at or adjacent to the perimeter of the mask. The portion of the protective coating that overlies the mask, and the mask, may then be removed from the substrate.
Abstract:
Disclosed herein is a printed circuit board, including: a base substrate on which a connection pad is formed; a dam spaced apart from one side of the connection pad; and a protective layer formed to surround the dam.
Abstract:
A silver nanoparticle composition is provided which is possible to be sintered through sintering at a low temperature in a short time and to form silver electro conductive film and wiring which is favorable for adhesion to a substrate and low in resistance, and articles using the same are provided. The silver nanoparticle composition is provided, wherein a main component of a solvent is water, a pH of the composition is within a range of 5.3 to 8.0, a silver nanoparticle included in the composition is protected by an organic acid or a derivative thereof, and the content of the organic acid or the derivative thereof with respect to silver is 2 to 20% by mass.
Abstract:
Disclosed herein is a printed circuit board including: a substrate; one or more elastic electrode formed on the substrate and made of an elastic material; and one or more metal electrode formed on the elastic electrode.
Abstract:
The present invention relates to a method for manufacturing a printed circuit board including a flame retardant insulation layer. The printed circuit board of the present invention exhibits excellent thermal stability and excellent mechanical strength, is suitable for imprinting lithography process, provides improved reliability by reducing coefficient of thermal expansion, and has excellent adhesion between circuit patterns and an insulation layer.
Abstract:
A thermally curable solder resist composition for a flexible printed circuit board is provided. The solder resist composition includes (a) 50-100 parts by weight of an epoxy resin, wherein the epoxy resin includes at least an aliphatic polyester modified epoxy resin having formula (I) or (II), in which, each of R1 and R2, independently, is a C6-38 saturated or an unsaturated carbon chain, R3 is ether, phenyl, a C6-38 heterocyclic or C6-38 saturated carbon chain, n is an integer of 1-10 and the aliphatic polyester modified epoxy resin had a molecular weight of 1000-5000; (b) 1-10 parts by weight of a curing agent; and (c) 1-10 parts by weight of a catalyst.